Search results for: monitoring networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5726

Search results for: monitoring networks

2846 The Impact of Board of Directors on CEO Compensation: Evidence from the UK

Authors: Saleh Alagla, Murya Habbash

Abstract:

The paper investigates whether the board of directors plays a monitoring role or not in CEO compensation for the UK firms during the eve of the recent financial crisis, 2004-2008. The use of heteroscedastic and autocorrelated error consistent estimation of the panel data shows, surprisingly, that four board characteristics variables are found to play a significant role in increasing the level of CEO compensation. This insightful result would suggest evidence of the managerial power theory in general and the cronyism hypothesis in particular. Moreover, the interesting evidence supporting managerial power perspective is that CEO-Chair duality reduces long-term compensation while increasing short-term compensation, thus suggesting that CEOs are risk averse who prefer short-term compensation to long-term compensation. Finally, consistent with the agency perspective board size is found to increase all compensation variables as expected.

Keywords: corporate governance, CEO compensation, board of directors, internal governance mechanisms, agency theory, managerial power theory, cronyism hypothesis

Procedia PDF Downloads 804
2845 Multiannual Trends of Toxic and Potentially Toxic Microalgae (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis) in Sfax Coasts (North of Gabes Gulf, Tunisia)

Authors: Moncer Malika, Ben Brahim Mounir, Bel Hassen Malika, Hamza Asma

Abstract:

During the last decades, microalgae communities have presented significant changes in their structure and taxa composition along the Mediterranean littoral shallow waters. The main purpose of this work was to evaluate possible changes, over a 17-year scale (1997–2013), in the diversity and abundance of three toxic and potentially toxic microalgae related to changes in environmental parameters on Sfax coasts, a pole of shellfish production in Tunisia. In this 17-year span, a chronological series of data showed that a clear disparity from one year to another was observed in the abundance of studied species. The distribution of these species has been subjected to a seasonal cycle. The studied microalgae, especially Prorocentrum lima, seem to have significant relationships with many physicochemicaland meteorological parameters.

Keywords: long-term monitoring HABs, physico-chemical parameters, meteorological parameters, Prorocentrum lima, Ostreopsis cf. ovata, Coolia monotis

Procedia PDF Downloads 133
2844 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm

Authors: Soumaya Sallem, Marc Olivas

Abstract:

This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.

Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm

Procedia PDF Downloads 195
2843 Smart Sustainable University Campus: Aspects on Efficient Space Utilization at National Taiwan University of Science and Technology

Authors: Wei-Hwa Chiang, Yu-Ching Cheng, Pei-Hsien Kao, Yu-Chi Lai

Abstract:

A smart sustainable university campus is multi-dimensional. The success requires intensive inter-disciplinary coordination among all users and the expert group and long-term optimization. This paper reported the design and realization process of the dense and campus NTUST campus where space sharing is essential. Two-phase web-based interviews with students were conducted regarding where they study between classes as well as how they move within the campus. Efficient and active utilization of public and semi-public spaces, in particular, the ones near the ground, were progressively designed and realized where lobbies, corridors, reading rooms, and classrooms not in use were considered. Most of the spaces were equipped with smart monitoring and controls in terms of access, lighting, ceiling fans, air condition, and energy use. Mobile device apps were developed regarding the management of the spaces while information about energy use, environmental quality, and the smart sustainable campus project itself were provided to stimulate the awareness of sustainability and active participation in optimizing the campus.

Keywords: smart, sustainability, campus, space utilization

Procedia PDF Downloads 153
2842 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids

Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel

Abstract:

Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.

Keywords: cyber security, performance, protocols, security standards, smart grid

Procedia PDF Downloads 324
2841 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
2840 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 166
2839 Predicting Machine-Down of Woodworking Industrial Machines

Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta

Abstract:

In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.

Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence

Procedia PDF Downloads 227
2838 Development of Quasi Real-Time Comprehensive System for Earthquake Disaster

Authors: Zhi Liu, Hui Jiang, Jin Li, Kunhao Chen, Langfang Zhang

Abstract:

Fast acquisition of the seismic information and accurate assessment of the earthquake disaster is the key problem for emergency rescue after a destructive earthquake. In order to meet the requirements of the earthquake emergency response and rescue for the cities and counties, a quasi real-time comprehensive evaluation system for earthquake disaster is developed. Based on monitoring data of Micro-Electro-Mechanical Systems (MEMS) strong motion network, structure database of a county area and the real-time disaster information by the mobile terminal after an earthquake, fragility analysis method and dynamic correction algorithm are synthetically obtained in the developed system. Real-time evaluation of the seismic disaster in the county region is finally realized to provide scientific basis for seismic emergency command, rescue and assistant decision.

Keywords: quasi real-time, earthquake disaster data collection, MEMS accelerometer, dynamic correction, comprehensive evaluation

Procedia PDF Downloads 213
2837 Design of Evaluation for Ehealth Intervention: A Participatory Study in Italy, Israel, Spain and Sweden

Authors: Monika Jurkeviciute, Amia Enam, Johanna Torres Bonilla, Henrik Eriksson

Abstract:

Introduction: Many evaluations of eHealth interventions conclude that the evidence for improved clinical outcomes is limited, especially when the intervention is short, such as one year. Often, evaluation design does not address the feasibility of achieving clinical outcomes. Evaluations are designed to reflect upon clinical goals of intervention without utilizing the opportunity to illuminate effects on organizations and cost. A comprehensive design of evaluation can better support decision-making regarding the effectiveness and potential transferability of eHealth. Hence, the purpose of this paper is to present a feasible and comprehensive design of evaluation for eHealth intervention, including the design process in different contexts. Methodology: The situation of limited feasibility of clinical outcomes was foreseen in the European Union funded project called “DECI” (“Digital Environment for Cognitive Inclusion”) that is run under the “Horizon 2020” program with an aim to define and test a digital environment platform within corresponding care models that help elderly people live independently. A complex intervention of eHealth implementation into elaborate care models in four different countries was planned for one year. To design the evaluation, a participative approach was undertaken using Pettigrew’s lens of change and transformations, including context, process, and content. Through a series of workshops, observations, interviews, and document analysis, as well as a review of scientific literature, a comprehensive design of evaluation was created. Findings: The findings indicate that in order to get evidence on clinical outcomes, eHealth interventions should last longer than one year. The content of the comprehensive evaluation design includes a collection of qualitative and quantitative methods for data gathering which illuminates non-medical aspects. Furthermore, it contains communication arrangements to discuss the results and continuously improve the evaluation design, as well as procedures for monitoring and improving the data collection during the intervention. The process of the comprehensive evaluation design consists of four stages: (1) analysis of a current state in different contexts, including measurement systems, expectations and profiles of stakeholders, organizational ambitions to change due to eHealth integration, and the organizational capacity to collect data for evaluation; (2) workshop with project partners to discuss the as-is situation in relation to the project goals; (3) development of general and customized sets of relevant performance measures, questionnaires and interview questions; (4) setting up procedures and monitoring systems for the interventions. Lastly, strategies are presented on how challenges can be handled during the design process of evaluation in four different countries. The evaluation design needs to consider contextual factors such as project limitations, and differences between pilot sites in terms of eHealth solutions, patient groups, care models, national and organizational cultures and settings. This implies a need for the flexible approach to evaluation design to enable judgment over the effectiveness and potential for adoption and transferability of eHealth. In summary, this paper provides learning opportunities for future evaluation designs of eHealth interventions in different national and organizational settings.

Keywords: ehealth, elderly, evaluation, intervention, multi-cultural

Procedia PDF Downloads 324
2836 Optimal Maintenance Policy for a Three-Unit System

Authors: A. Abbou, V. Makis, N. Salari

Abstract:

We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature.

Keywords: reliability, maintenance optimization, Markov decision process, heuristics

Procedia PDF Downloads 219
2835 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.

Keywords: editing prevention technique, gradient method, luminance change, video watermarking

Procedia PDF Downloads 456
2834 Myoelectric Analysis for the Assessment of Muscle Functions and Fatigue Monitoring of Upper Extremity for Stroke Patients Performing Robot-Assisted Bilateral Training

Authors: Hsiao-Lung Chan, Ching-Yi Wu, Yan-Zou Lin, Yo Chiao, Ya-Ju Chang

Abstract:

Robot-assisted bilateral arm training has demonstrated useful to improve motor control in stroke patients and save human resources. In clinics, the efficiency of this treatment is mostly performed by comparing functional scales before and after rehabilitation. However, most of these assessments are based on behavior evaluation. The underlying improvement of muscle activation and coordination is unknown. Moreover, stroke patients are easier to have muscle fatigue under robot-assisted rehabilitation due to the weakness of muscles. This safety issue is still less studied. In this study, EMG analysis was applied during training. Our preliminary results showed the co-contraction index and co-contraction area index can delineate the improved muscle coordination of biceps brachii vs. flexor carpiradialis. Moreover, the smoothed, normalized cycle-by-cycle median frequency of left and right extensor carpiradialis decreased as the training progress, implying the occurrence of muscle fatigue.

Keywords: robot-assisted rehabilitation, strokes, muscle coordination, muscle fatigue

Procedia PDF Downloads 475
2833 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures

Authors: Reza Rezaeipour Honarmandzad

Abstract:

In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.

Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements

Procedia PDF Downloads 417
2832 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture

Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf

Abstract:

Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.

Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer

Procedia PDF Downloads 118
2831 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 350
2830 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand

Authors: Phawichsak Prapassornpitaya, Wanida Jinsart

Abstract:

Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.

Keywords: fine particulate matter, ARIMA, RMSE, Bangkok

Procedia PDF Downloads 278
2829 Gathering Space after Disaster: Understanding the Communicative and Collective Dimensions of Resilience through Field Research across Time in Hurricane Impacted Regions of the United States

Authors: Jack L. Harris, Marya L. Doerfel, Hyunsook Youn, Minkyung Kim, Kautuki Sunil Jariwala

Abstract:

Organizational resilience refers to the ability to sustain business or general work functioning despite wide-scale interruptions. We focus on organization and businesses as a pillar of their communities and how they attempt to sustain work when a natural disaster impacts their surrounding regions and economies. While it may be more common to think of resilience as a trait possessed by an organization, an emerging area of research recognizes that for organizations and businesses, resilience is a set of processes that are constituted through communication, social networks, and organizing. Indeed, five processes, robustness, rapidity, resourcefulness, redundancy, and external availability through social media have been identified as critical to organizational resilience. These organizing mechanisms involve multi-level coordination, where individuals intersect with groups, organizations, and communities. Because the nature of such interactions are often networks of people and organizations coordinating material resources, information, and support, they necessarily require some way to coordinate despite being displaced. Little is known, however, if physical and digital spaces can substitute one for the other. We thus are guided by the question, is digital space sufficient when disaster creates a scarcity of physical space? This study presents a cross-case comparison based on field research from four different regions of the United States that were impacted by Hurricanes Katrina (2005), Sandy (2012), Maria (2017), and Harvey (2017). These four cases are used to extend the science of resilience by examining multi-level processes enacted by individuals, communities, and organizations that together, contribute to the resilience of disaster-struck organizations, businesses, and their communities. Using field research about organizations and businesses impacted by the four hurricanes, we code data from interviews, participant observations, field notes, and document analysis drawn from New Orleans (post-Katrina), coastal New Jersey (post-Sandy), Houston Texas (post-Harvey), and the lower keys of Florida (post-Maria). This paper identifies an additional organizing mechanism, networked gathering spaces, where citizens and organizations, alike, coordinate and facilitate information sharing, material resource distribution, and social support. Findings show that digital space, alone, is not a sufficient substitute to effectively sustain organizational resilience during a disaster. Because the data are qualitative, we expand on this finding with specific ways in which organizations and the people who lead them worked around the problem of scarce space. We propose that gatherings after disaster are a sixth mechanism that contributes to organizational resilience.

Keywords: communication, coordination, disaster management, information and communication technologies, interorganizational relationships, resilience, work

Procedia PDF Downloads 171
2828 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: flaring, fuel gas network, GHG emissions, stream

Procedia PDF Downloads 344
2827 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 470
2826 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 435
2825 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering

Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif

Abstract:

In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.

Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network

Procedia PDF Downloads 236
2824 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates

Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir

Abstract:

The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.

Keywords: drug discovery, ionic current, operational amplifier, patch clamp

Procedia PDF Downloads 519
2823 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms

Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour

Abstract:

This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.

Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks

Procedia PDF Downloads 707
2822 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru

Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza

Abstract:

Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.

Keywords: ground-ozone, lima, sulphur dioxide, WRF-chem

Procedia PDF Downloads 137
2821 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282
2820 Musical Education of Preschool Children: From the Average to the Gifted

Authors: Eudjen Cinc

Abstract:

The contemporary society, which is, whether we like it or not, oriented towards utilitarianism, pragmatics and professional flexibility, lives in a certain paradox. On the one hand, at least declaratively, the accent of modern society is on knowledge; knowledge is even considered to be a commodity, the popularity of education is increased as the only means of survival in the market-oriented world, while on the other hand modern society is moving towards simplification and decreasing the amount of information and areas which are considered necessary in the generally excepted concept of education. We cannot talk about the preschool teacher profession without mentioning work with gifted children. The preschool teacher knowing the characteristics of gifted children is of utmost importance because their early identification and professional guidance are of cardinal importance for the direction in which the children will develop. When we talk about musical ability, in the first phase, the role of preschool teachers in the identification and stimulation of gifted children naturally refers to monitoring children’s musical manifestation. The identification process and work with the gifted presupposes a good relationship with the family, synergy of these two important influences in the child’s education and upbringing.

Keywords: music education, gifted children, methodology, kindergarten

Procedia PDF Downloads 273
2819 Neural Nets Based Approach for 2-Cells Power Converter Control

Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida

Abstract:

Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.

Keywords: neural nets, control, multicellular converters, 2-cells chopper

Procedia PDF Downloads 835
2818 Overview of Standard Unit System of Shenzhen Land Spatial Planning and Case Analysis

Authors: Ziwei Huang

Abstract:

The standard unit of Shenzhen land spatial planning has the characteristics of vertical conduction, horizontal evaluation, internal balance and supervision of implementation. It mainly assumes the role of geospatial unit, assists in promoting the complex development of the business in Shenzhen and undertakes the management and transmission of upper and lower levels of planning as well as the Urban management functions such as gap analysis of public facilities, planning evaluation and dynamic monitoring of planning information. Combining with the application examples of the analysis of gaps in public facilities in Longgang District, it can be found that the standard unit of land spatial planning in Shenzhen as a small-scale geographic basic unit, has a stronger urban spatial coupling effect. However, the universality of the application of the system is still lacking and it is necessary to propose more scientific and powerful standard unit delineation standards and planning function evaluation indicators to guide the implementation of the system's popularization and application.

Keywords: Shenzhen city, land spatial planning, standard unit system, urban delicacy management

Procedia PDF Downloads 129
2817 Secure Intelligent Information Management by Using a Framework of Virtual Phones-On Cloud Computation

Authors: Mohammad Hadi Khorashadi Zadeh

Abstract:

Many new applications and internet services have been emerged since the innovation of mobile networks and devices. However, these applications have problems of security, management, and performance in business environments. Cloud systems provide information transfer, management facilities, and security for virtual environments. Therefore, an innovative internet service and a business model are proposed in the present study for creating a secure and consolidated environment for managing the mobile information of organizations based on cloud virtual phones (CVP) infrastructures. Using this method, users can run Android and web applications in the cloud which enhance performance by connecting to other CVP users and increases privacy. It is possible to combine the CVP with distributed protocols and central control which mimics the behavior of human societies. This mix helps in dealing with sensitive data in mobile devices and facilitates data management with less application overhead.

Keywords: BYOD, mobile cloud computing, mobile security, information management

Procedia PDF Downloads 317