Search results for: data mining techniques
26966 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 13026965 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 13426964 The Study on Life of Valves Evaluation Based on Tests Data
Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu
Abstract:
Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.Keywords: censored data, temperature tests, valves, vibration tests
Procedia PDF Downloads 34626963 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 30626962 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya
Abstract:
Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination
Procedia PDF Downloads 41926961 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 28926960 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission
Procedia PDF Downloads 27826959 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry
Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim
Abstract:
Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain
Procedia PDF Downloads 9126958 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters
Authors: Hecson Christian, Joel Macwan
Abstract:
Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.Keywords: GIS, AHP, MCDA, Geo-technical
Procedia PDF Downloads 14526957 Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov.
Authors: Grecco M. Ante, Princess Rochelle O. Gan
Abstract:
Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines.Keywords: phytomining, Phyllanthus sp. nov., EDTA, nickel, laterite
Procedia PDF Downloads 46526956 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis
Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti
Abstract:
Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis
Procedia PDF Downloads 16026955 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery
Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley
Abstract:
Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter
Procedia PDF Downloads 47226954 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System
Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina
Abstract:
Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity
Procedia PDF Downloads 34426953 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning
Authors: Elizabeth M. Seabrook, Nikki S. Rickard
Abstract:
Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.Keywords: emotion, experience sampling methods, mental health, social media
Procedia PDF Downloads 25026952 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 14226951 A Sector-Wise Study on Detecting Earnings Management in India
Authors: Raghuveer Kaur, Kartikay Sharma, Ashu Khanna
Abstract:
Earnings management has been present from times immemorial. The recent downfall of giant enterprises like Enron, Satyam and WorldCom has brought a lot of focus on the study and detection of earnings management. The present study is an attempt to study earnings management in one of the fastest emerging economy - India. The study makes an attempt to understand earnings management in different sectors of the economy. The paper first tests a hypothesis to check whether different sectors of India are engaged in earnings management or not. In the later section the paper aims to study the level of earnings management in 6 popular sectors of India: IT&BPO, Retail, Telecom, Biotech, Hotels and coffee. To measure earnings management two popular techniques of detecting earnings management has been employed: Modified Jones Model and Beniesh M Score. A total of 332 companies were studied. Publicly available data from Capitaline database has been used. The paper also classifies the top and bottom five performers on the basis of sales turnover in each sector and identifies whether they manage their earnings or not.Keywords: earnings management, India, modified Jones model, Beneish M score
Procedia PDF Downloads 51626950 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame
Authors: Ardalan Sabamehr, Ashutosh Bagchi
Abstract:
Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform
Procedia PDF Downloads 29626949 Design of Transmit Beamspace and DOA Estimation in MIMO Radar
Authors: S. Ilakkiya, A. Merline
Abstract:
A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation.Keywords: adaptive and non-adaptive spectral estimation, direction of arrival estimation, MIMO radar, rotational invariance property, transmit, receive beamforming
Procedia PDF Downloads 51926948 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City
Authors: Berhanu Keno Terfa
Abstract:
Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.
Procedia PDF Downloads 3526947 Combining Corpus Linguistics and Critical Discourse Analysis to Study Power Relations in Hindi Newspapers
Authors: Vandana Mishra, Niladri Sekhar Dash, Jayshree Charkraborty
Abstract:
This present paper focuses on the application of corpus linguistics techniques for critical discourse analysis (CDA) of Hindi newspapers. While Corpus linguistics is the study of language as expressed in corpora (samples) of 'real world' text, CDA is an interdisciplinary approach to the study of discourse that views language as a form of social practice. CDA has mainly been studied from a qualitative perspective. However, we can say that recent studies have begun combining corpus linguistics with CDA in analyzing large volumes of text for the study of existing power relations in society. The corpus under our study is also of a sizable amount (1 million words of Hindi newspaper texts) and its analysis requires an alternative analytical procedure. So, we have combined both the quantitative approach i.e. the use of corpus techniques with CDA’s traditional qualitative analysis. In this context, we have focused on the Keyword Analysis Sorting Concordance Lines of the selected Keywords and calculating collocates of the keywords. We have made use of the Wordsmith Tool for all these analysis. The analysis starts with identifying the keywords in the political news corpus when compared with the main news corpus. The keywords are extracted from the corpus based on their keyness calculated through statistical tests like chi-squared test and log-likelihood test on the frequent words of the corpus. Some of the top occurring keywords are मोदी (Modi), भाजपा (BJP), कांग्रेस (Congress), सरकार (Government) and पार्टी (Political party). This is followed by the concordance analysis of these keywords which generates thousands of lines but we have to select few lines and examine them based on our objective. We have also calculated the collocates of the keywords based on their Mutual Information (MI) score. Both concordance and collocation help to identify lexical patterns in the political texts. Finally, all these quantitative results derived from the corpus techniques will be subjectively interpreted in accordance to the CDA’s theory to examine the ways in which political news discourse produces social and political inequality, power abuse or domination.Keywords: critical discourse analysis, corpus linguistics, Hindi newspapers, power relations
Procedia PDF Downloads 22426946 Agricultural Land Suitability Analysis of Kampe-Omi Irrigation Scheme Using Remote Sensing and Geographic Information System
Authors: Olalekan Sunday Alabi, Titus Adeyemi Alonge, Olumuyiwa Idowu Ojo
Abstract:
Agricultural land suitability analysis and mapping play an imperative role for sustainable utilization of scarce physical land resources. The objective of this study was to prepare spatial database of physical land resources for irrigated agriculture and to assess land suitability for irrigation and developing suitable area map of the study area. The study was conducted at Kampe-Omi irrigation scheme located at Yagba West Local Government Area of Kogi State, Nigeria. Temperature and rainfall data of the study area were collected for 10 consecutive years (2005-2014). Geographic Information System (GIS) techniques were used to develop irrigation land suitability map of the study area. Attribute parameters such as the slope, soil properties, topography of the study area were used for the analysis. The available data were arranged, proximity analysis of Arc-GIS was made, and this resulted into five mapping units. The final agricultural land suitability map of the study area was derived after overlay analysis. Based on soil composition, slope, soil properties and topography, it was concluded that; Kampe-Omi has rich sandy loam soil, which is viable for agricultural purpose, the soil composition is made up of 60% sand and 40% loam. The land-use pattern map of Kampe-Omi has vegetal area and water-bodies covering 55.6% and 19.3% of the total assessed area respectively. The landform of Kampe-Omi is made up of 41.2% lowlands, 37.5% normal lands and 21.3% highlands. Kampe-Omi is adequately suitable for agricultural purpose while an extra of 20.2% of the area is highly suitable for agricultural purpose making 72.6% while 18.7% of the area is slightly suitable.Keywords: remote sensing, GIS, Kampe–Omi, land suitability, mapping
Procedia PDF Downloads 21226945 Development and Acceptance of a Proposed Module for Enhancing the Reading and Writing Skills in Baybayin: The Traditional Writing System in the Philippines
Authors: Maria Venus G. Solares
Abstract:
The ancient Filipinos had their own spelling or alphabet that differed from the modern Roman alphabet brought by the Spaniards. It consists of seventeen letters, three vowels, and fourteen consonants and is called Baybayin. The word Baybayin is a Tagalog word that refers to all the letters used in writing a language, an alphabet; however, it is also a syllable. The House Bill 4395, first proposed by Rep. Leopoldo Bataoil of the second district of Pangasinan in 2011, which later became House Bill 1022 of what he called The Declaration of the Baybayin as the National Writing System of the Philippines, prompted the researcher to conduct a study on the topic. The main objective of this study was to develop and assess the proposed module for enhancing the reading and writing skills in Baybayin of the students. The researchers wanted to ensure the acceptability of the Baybayin using the proposed module and meet the needs of students in developing their ability to read and write Baybayin through the module. The researchers used quasi-experimental research in this study. The data was collected through the initial and final analysis of the students of Adamson University's ABM 1102 using convenient sampling techniques. Based on statistical analysis of data using weighted mean, standard deviation, and paired t-tests, the proposed module helped improve the students' literacy skills, and the response exercises in the proposed module changed the acceptability of the Baybayin in their minds. The study showed that there was an important difference in the scores of students before and after the use of the module. The student's response to the assessment of their reading and writing skills on Baybayin was highly acceptable. This study will help develop the reading and writing skills of the students in Baybayin and teach Baybayin in response to the revival of a part of Philippine culture that has been long forgotten.Keywords: Baybayin, proposed module, skill, acceptability
Procedia PDF Downloads 14726944 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm
Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy
Abstract:
IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.Keywords: IoT, fog networks, data stewardship, dynamic access policy
Procedia PDF Downloads 5926943 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29226942 An Automated Approach to Consolidate Galileo System Availability
Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt
Abstract:
Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.Keywords: availability, data quality, system performance, Galileo, aerospace
Procedia PDF Downloads 16726941 Effectiveness of Video Interventions for Perpetrators of Domestic Violence
Authors: Zeynep Turhan
Abstract:
Digital tools can improve knowledge and awareness of strategies and skills for healthy and respectful intimate relationships. The website of the Healthy and Respectful Relationship Program has been developed and included five key videos about how to build healthy intimate relationships. This study examined the perspectives about informative videos by focusing on how individuals learn new information or challenge their preconceptions or attitudes regarding male privilege and women's oppression. Five individuals who received no-contact orders and attended group intervention were the sample of this study. The observation notes were the major methodology examining how participants responded to video tools. The data analysis method was the interpretative phenomenological analysis. The results showed that many participants found the tools useful in learning the types of violence and communication strategies. Nevertheless, obstacles to implementing some techniques were found in their relationships. These digital tools might enhance healthy and respectful relationships despite some limitations.Keywords: healthy relationship, digital tools, intimate partner violence, perpetrators, video interventions
Procedia PDF Downloads 9526940 The Impact of the General Data Protection Regulation on Human Resources Management in Schools
Authors: Alexandra Aslanidou
Abstract:
The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.Keywords: general data protection regulation, human resource management, educational system
Procedia PDF Downloads 10026939 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 15726938 Electromagnetically-Vibrated Solid-Phase Microextraction for Organic Compounds
Authors: Soo Hyung Park, Seong Beom Kim, Wontae Lee, Jin Chul Joo, Jungmin Lee, Jongsoo Choi
Abstract:
A newly-developed electromagnetically vibrated solid-phase microextraction (SPME) device for extracting nonpolar organic compounds from aqueous matrices was evaluated in terms of sorption equilibrium time, precision, and detection level relative to three other more conventional extraction techniques involving SPME, viz., static, magnetic stirring, and fiber insertion/retraction. Electromagnetic vibration at 300~420 cycles/s was found to be the most efficient extraction technique in terms of reducing sorption equilibrium time and enhancing both precision and linearity. The increased efficiency for electromagnetic vibration was attributed to a greater reduction in the thickness of the stagnant-water layer that facilitated more rapid mass transport from the aqueous matrix to the SPME fiber. Electromagnetic vibration less than 500 cycles/s also did not detrimentally impact the sustainability of the extracting performance of the SPME fiber. Therefore, electromagnetically vibrated SPME may be a more powerful tool for rapid sampling and solvent-free sample preparation relative to other more conventional extraction techniques used with SPME.Keywords: electromagnetic vibration, organic compounds, precision, solid-phase microextraction (SPME), sorption equilibrium time
Procedia PDF Downloads 25426937 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 524