Search results for: artificial stock markets
846 Evaluation of Learning Outcomes, Satisfaction and Self-Assessment of Students as a Change Factor in the Polish Higher Education System
Authors: Teresa Kupczyk, Selçuk Mustafa Özcan, Joanna Kubicka
Abstract:
The paper presents results of specialist literature analysis concerning learning outcomes and student satisfaction as a factor of the necessary change in the Polish higher education system. The objective of the empirical research was to determine students’ assessment of learning outcomes, satisfaction of their expectations, as well as their satisfaction with lectures and practical classes held in the traditional form, e-learning and video-conference. The assessment concerned effectiveness of time spent at classes, usefulness of the delivered knowledge, instructors’ preparation and teaching skills, application of tools, studies curriculum, its adaptation to students’ needs and labour market, as well as studying conditions. Self-assessment of learning outcomes was confronted with assessment by lecturers. The indirect objective of the research was also to identify how students assessed their activity and commitment in acquisition of knowledge and their discipline in achieving education goals. It was analysed how the studies held affected the students’ willingness to improve their skills and assessment of their perspectives at the labour market. To capture the changes underway, the research was held at the beginning, during and after completion of the studies. The study group included 86 students of two editions of full-time studies majoring in Management and specialising in “Mega-event organisation”. The studies were held within the EU-funded project entitled “Responding to challenges of new markets – innovative managerial education”. The results obtained were analysed statistically. Average results and standard deviations were calculated. In order to describe differences between the studied variables present during the process of studies, as well as considering the respondents’ gender, t-Student test for independent samples was performed with the IBM SPSS Statistics 21.0 software package. Correlations between variables were identified by calculation of Pearson and Spearman correlation coefficients. Research results suggest necessity to introduce some changes in the teaching system applied at Polish higher education institutions, not only considering the obtained outcomes, but also impact on students’ willingness to improve their qualifications constantly, improved self-assessment among students and their opportunities at the labour market.Keywords: higher education, learning outcomes, students, change
Procedia PDF Downloads 237845 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 96844 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations
Authors: I. S. R. Butswat, D. Zahraddeen
Abstract:
This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.Keywords: animal, agriculture, entreprenurship, wealth
Procedia PDF Downloads 243843 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence
Authors: Leonie Laskowitz
Abstract:
A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness
Procedia PDF Downloads 146842 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 184841 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 253840 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 428839 Competitivity in Procurement Multi-Unit Discrete Clock Auctions: An Experimental Investigation
Authors: Despina Yiakoumi, Agathe Rouaix
Abstract:
Laboratory experiments were run to investigate the impact of different design characteristics of the auctions, which have been implemented to procure capacity in the UK’s reformed electricity markets. The experiment studies competition among bidders in procurement multi-unit discrete descending clock auctions under different feedback policies and pricing rules. Theory indicates that feedback policy in combination with the two common pricing rules; last-accepted bid (LAB) and first-rejected bid (FRB), could affect significantly the auction outcome. Two information feedback policies regarding the bidding prices of the participants are considered; with feedback and without feedback. With feedback, after each round participants are informed of the number of items still in the auction and without feedback, after each round participants have no information about the aggregate supply. Under LAB, winning bidders receive the amount of the highest successful bid and under the FRB the winning bidders receive the lowest unsuccessful bid. Based on the theoretical predictions of the alternative auction designs, it was decided to run three treatments. First treatment considers LAB with feedback; second treatment studies LAB without feedback; third treatment investigates FRB without feedback. Theoretical predictions of the game showed that under FRB, the alternative feedback policies are indifferent to the auction outcome. Preliminary results indicate that LAB with feedback and FRB without feedback achieve on average higher clearing prices in comparison to the LAB treatment without feedback. However, the clearing prices under LAB with feedback and FRB without feedback are on average lower compared to the theoretical predictions. Although under LAB without feedback theory predicts the clearing price will drop to the competitive equilibrium, experimental results indicate that participants could still engage in cooperative behavior and drive up the price of the auction. It is showed, both theoretically and experimentally, that the pricing rules and the feedback policy, affect the bidding competitiveness of the auction by providing opportunities to participants to engage in cooperative behavior and exercise market power. LAB without feedback seems to be less vulnerable to market power opportunities compared to the alternative auction designs. This could be an argument for the use of LAB pricing rule in combination with limited feedback in the UK capacity market in an attempt to improve affordability for consumers.Keywords: descending clock auctions, experiments, feedback policy, market design, multi-unit auctions, pricing rules, procurement auctions
Procedia PDF Downloads 296838 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 234837 Technical and Economic Potential of Partial Electrification of Railway Lines
Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong
Abstract:
Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.Keywords: electrification, hybrid, railway, storage
Procedia PDF Downloads 426836 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories
Authors: Mojtaba Taheri, Saied Reza Ameli
Abstract:
In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty
Procedia PDF Downloads 71835 Proposing of an Adaptable Land Readjustment Model for Developing of the Informal Settlements in Kabul City
Authors: Habibi Said Mustafa, Hiroko Ono
Abstract:
Since 2006, Afghanistan is dealing with one of the most dramatic trend of urban movement in its history, cities and towns are expanding in size and number. Kabul is the capital of Afghanistan and as well as the fast-growing city in the Asia. The influx of the returnees from neighbor countries and other provinces of Afghanistan caused high rate of artificial growth which slums increased. As an unwanted consequence of this growth, today informal settlements have covered a vast portion of the city. Land Readjustment (LR) has proved to be an important tool for developing informal settlements and reorganizing urban areas but its implementation always varies from country to country and region to region within the countries. Consequently, to successfully develop the informal settlements in Kabul, we need to define an Afghan model of LR specifically for Afghanistan which needs to incorporate all those factors related to the socio-economic condition of the country. For this purpose, a part of the old city of Kabul has selected as a study area which is located near the Central Business District (CBD). After the further analysis and incorporating all needed factors, the result shows a positive potential for the implementation of an adaptable Land Readjustment model for Kabul city which is more sustainable and socio-economically friendly. It will enhance quality of life and provide better urban services for the residents. Moreover, it will set a vision and criteria by which sustainable developments shall proceed in other similar informal settlements of Kabul.Keywords: adaptation, informal settlements, Kabul, land readjustment, preservation
Procedia PDF Downloads 199834 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan
Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed
Abstract:
Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot
Procedia PDF Downloads 47833 An Assessment of Redevelopment of Cessed Properties in the Island City of Mumbai, India
Authors: Palak Patel
Abstract:
Mumbai is one of the largest cities of the country with a population of 12.44 million over 437 Sq.km, and it is known as financial hub of India. In early 20th century, with the expansion of industrialization and growth of port, a huge demand for housing was created. In response to this, government enacted rent controls. Over a period of time, due to rent controls, the existing rental housing stock has deteriorated. Therefore, in last 25 years, government has been focusing on redevelopment of these rental buildings, also called ‘Cessed buildings’, in order to provide better standard of living to the tenants and also, to supply new housing units in the market. In India, developers are the main players in the housing market as they are the supplier of maximum dwelling units in the market. Hence, government attempts are inclined toward facilitating developers for the cessed building redevelopment projects by incentivizing them through making special provisions in the development control regulations. This research focuses on the entire process of redevelopment by the developers and issues faced by the related stakeholders in the same to reduce the stress on housing. It also highlights the loopholes in the current system and inefficient functioning of the process. The research was carried out by interviewing various developers, tenants and landlords in the island city who have already gone through redevelopment. From the case studies, it is very evident that redevelopment is undoubtedly a huge profit making business. In some cases, developers make profit of almost double the amount of the investment. But yet, satisfactory results are not seen on ground. It clearly indicates that there are some issues faced by developers which have not been addressed. Some of these issues include cumbersome legal procedures, negotiations with landlords and tenants, congestion and narrow roads, small size of the plots, informal practicing of ‘Pagdi system’ and financial viability of the project. This research recommends the up gradation of the existing cessed buildings by sharing the repairing and maintenance cost between landlords and tenants and also, income levels of tenants can be traced and housing vouchers or incentives can be provided to those who actual need it so that landlord does not have to subsidize the tenants. For redevelopment, the current interventions are generalized in nature as it does not take on ground issues into the consideration. There is need to identify local issues and give area specific solutions. And also, government should play a role of mediator to ensure all the stakeholders are satisfied and project gets completed on time.Keywords: cessed buildings, developers, government’s interventions, redevelopment, rent controls, tenants
Procedia PDF Downloads 184832 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape
Authors: Moschos Vogiatzis, K. Perakis
Abstract:
Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.Keywords: classification, land use/land cover, mapping, random forest
Procedia PDF Downloads 123831 Development and Compositional Analysis of Functional Bread and Biscuit from Soybean, Peas and Rice Flour
Authors: Jean Paul Hategekimana, Bampire Claudine, Niyonsenga Nadia, Irakoze Josiane
Abstract:
Peas, soybeans and rice are crops which are grown in Rwanda and are available in rural and urban local markets and they give contribution in reduction of health problems especially in fighting malnutrition and food insecurity in Rwanda. Several research activities have been conducted on how cereals flour can be mixed with legumes flour for developing baked products which are rich in protein, fiber, minerals as they are found in legumes. However, such activity was not yet well studied in Rwanda. The aim of the present study was to develop bread and biscuit products from peas, soybeans and rice as functional ingredients combined with wheat flour and then analyze the nutritional content and consumer acceptability of new developed products. The malnutrition problem can be reduced by producing bread and biscuits which are rich in protein and are very accessible for every individual. The processing of bread and biscuit were made by taking peas flour, soybeans flour and rice flour mixed with wheat flour and other ingredients then a dough was made followed by baking. For bread, two kind of products were processed, for each product one control and three experimental samples in different three ratios of peas and rice were prepared. These ratios were 95:5, 90:10 and 80:20 for bread from peas and 85:5:10, 80:10:10 and 70:10:20 for bread from peas and rice. For biscuit, two kind of products were also processed, for each product one control sample and three experimental samples in three different ratios were prepared. These ratios are 90:5:5,80:10:10 and 70:10:20 for biscuit from peas and rice and 90:5:5,80:10:10 and 70:10:20 for biscuit from soybean and rice. All samples including the control sample were analyzed for the consumer acceptability (sensory attributes) and nutritional composition. For sensory analysis, bread from of peas and rice flour with wheat flour at ratio 85:5:10 and bread from peas only as functional ingredient with wheat flour at ratio 95:5 and biscuits made from a of soybeans and rice at a ratio 90:5:5 and biscuit made from peas and rice at ratio 90:5:5 were most acceptable compared to control sample and other samples in different ratio. The moisture, protein, fat, fiber and minerals (Sodium and iron.) content were analyzed where bread from peas in all ratios was found to be rich in protein and fiber compare to control sample and biscuit from soybean and rice in all ratios was found to be rich in protein and fiber compare to control sample.Keywords: bakery products, peas and rice flour, wheat flour, sensory evaluation, proximate composition
Procedia PDF Downloads 63830 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm
Authors: Roya Ahmadi Ahangar, Hamid Madadyari
Abstract:
The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.Keywords: load-frequency control, multi zone, robust PID controller, wind generation
Procedia PDF Downloads 299829 The Effect of Applying the Electronic Supply System on the Performance of the Supply Chain in Health Organizations
Authors: Sameh S. Namnqani, Yaqoob Y. Abobakar, Ahmed M. Alsewehri, Khaled M. AlQethami
Abstract:
The main objective of this research is to know the impact of the application of the electronic supply system on the performance of the supply department of health organizations. To reach this goal, the study adopted independent variables to measure the dependent variable (performance of the supply department), namely: integration with suppliers, integration with intermediaries and distributors and knowledge of supply size, inventory, and demand. The study used the descriptive method and was aided by the questionnaire tool that was distributed to a sample of workers in the Supply Chain Management Department of King Abdullah Medical City. After the statistical analysis, the results showed that: The 70 sample members strongly agree with the (electronic integration with suppliers) axis with a p-value of 0.001, especially with regard to the following: Opening formal and informal communication channels between management and suppliers (Mean 4.59) and exchanging information with suppliers with transparency and clarity (Mean 4.50). It also clarified that the sample members agree on the axis of (electronic integration with brokers and distributors) with a p-value of 0.001 and this is represented in the following elements: Exchange of information between management, brokers and distributors with transparency, clarity (Mean 4.18) , and finding a close cooperation relationship between management, brokers and distributors (Mean 4.13). The results also indicated that the respondents agreed to some extent on the axis (knowledge of the size of supply, stock, and demand) with a p-value of 0.001. It also indicated that the respondents strongly agree with the existence of a relationship between electronic procurement and (the performance of the procurement department in health organizations) with a p-value of 0.001, which is represented in the following: transparency and clarity in dealing with suppliers and intermediaries to prevent fraud and manipulation (Mean 4.50) and reduce the costs of supplying the needs of the health organization (Mean 4.50). From the results, the study recommended several recommendations, the most important of which are: that health organizations work to increase the level of information sharing between them and suppliers in order to achieve the implementation of electronic procurement in the supply management of health organizations. Attention to using electronic data interchange methods and using modern programs that make supply management able to exchange information with brokers and distributors to find out the volume of supply, inventory, and demand. To know the volume of supply, inventory, and demand, it recommended the application of scientific methods of supply for storage. Take advantage of information technology, for example, electronic data exchange techniques and documents, where it can help in contact with suppliers, brokers, and distributors, and know the volume of supply, inventory, and demand, which contributes to improving the performance of the supply department in health organizations.Keywords: healthcare supply chain, performance, electronic system, ERP
Procedia PDF Downloads 135828 Alternative Islamic Finance Channels and Instruments: An Evaluation of the Potential and Considerations in Light of Sharia Principles
Authors: Tanvir A. Uddin, Blake Goud
Abstract:
Emerging trends in FinTech-enabled alternative finance, which includes channels and instruments emerging outside the traditional financial system, heralds unprecedented opportunities to improve financial intermediation and increase access to finance. With widespread criticism of the mainstream Islamic banking and finance sector as either mimicking the conventional system, failing to achieve inclusive growth or both, industry stakeholders are turning to technology to show that finance can be done differently. This paper will outline the critical elements for successful deployment of technology to maximize benefit and minimize potential for harm from introduction of Islamic FinTech and propose recommendations for Islamic financial institutions, FinTech companies, regulators and other stakeholders who are integrating or who are considering introducing FinTech solutions. The paper will present an overview of literature, present relevant case studies and summarize the lessons from interviews conducted with Islamic FinTech founders from around the world. With growing central bank concerns about leveraged loans and ballooning private credit markets globally (estimated at $1.4 trillion), current and future Islamic FinTech operators are at risk of contributing to the problems they aim to solve by operating in a 'shadow banking' system. The paper will show that by systematising a robust theory of change linked to positive outcomes, utilising objective impact frameworks (e.g., the Impact Measurement Project) and instilling a risk management culture that is proactive about potential social harm (e.g., irresponsible lending), FinTech can enable the Islamic finance industry to support positive social impact and minimize harm in support of the maqasid. The adoption of FinTech within the Islamic finance context is still at a nascent stage and the recommendations we provide based on the limited experience to date will help address some of the major cross-cutting issues related to FinTech. Further research will be needed to elucidate in more detail issues relating to individual sectors and countries within the broader global Islamic finance industry.Keywords: alternative finance, FinTech, Islamic finance, maqasid, theory of change
Procedia PDF Downloads 151827 The Impact of Artificial Intelligence on Torism Ouputs
Authors: Nancy Ayman Kamal Mohamed Mehrz
Abstract:
As the economies of other countries in the Mediterranean Basin, the tourism sector in our country has a high denominator in economics. Tourism businesses, which are building blocks of tourism, sector faces with a variety of problems during their activities. These problems faced make business efficiency and competition conditions of the businesses difficult. Most of the problems faced by the tourism businesses and the information of consumers about consumers’ rights were used in this study, which is conducted to determine the problems of tourism businesses in the Central Anatolia Region. It is aimed to contribute the awareness of staff and executives working at tourism sector and to attract attention of businesses active concurrently with tourism sector and legislators. E-tourism is among the issues that have recently been entered into the field of tourism. In order to achieve this type of tourism, Information and Communications Technology (or ICT) infrastructures as well as Co-governmental organizations and tourism resources are important. In this study, the opinions of managers and tourism officials about the e-tourism in Leman city were measured; it also surveyed the impact of level of digital literacy of managers and tourism officials on attracting tourists. This study was conducted. One of the environs of the Esfahan province. This study is a documentary – survey and the sources include library resources and also questionnaires. The results obtained indicate that if managers use ICT, it may help e-tourism to be developed in the region, and increasing managers’ beliefs on e-tourism and upgrading their level of digital literacy may affect e-tourism development.Keywords: financial problems, the problems of tourism businesses, tourism businesses, internet, marketing, tourism, tourism management economic competitiveness, enhancing competitiveness
Procedia PDF Downloads 69826 Female Labor Force Participation in Iranian Rural Areas: An Inter-provincial Study
Authors: Zahra Mila Elmi, Mahsa Khanekheshi
Abstract:
Almost half of the population and potential manpower in the country and rural areas are women. Manpower especially educated people, plays an important role in the production and economic growth. Also, the potential of rural areas to create employment should not be overlooked. In this research, the effects of socio-economic and demographic factors on women's economic participation in rural areas of Iran's provinces will be studied. Therefore, this study was performed by using the results of the rural households income and expenditure surveys -has been taken in 2016- in the framework of pseudo panel data. This study used the logit model and the maximum likelihood method to study the rural women's participation, with 28,265 observations. Results show the inverted U-shaped relationship between age and the probability of female participation; In other words, young women are more likely to participate in labor markets more than the other groups. Divorced and single woman has more chance of participation in comparison with who was being married. With increasing the divorce rate and singleness in Iran, economic policymakers must provide appropriate solutions for this challenge in the coming years. On the base of the results, being a student and the presence of an infant under the age of 6 in the household has a negative effect on the possibility of women's participation in the labor market. The women's education level has a U-shaped relationship with their participation rate. Illiteracy and high education have a strong positive effect on the economic participation of rural women. This shows the dual labor market for women in Iran. Illiterate women are attracted to service jobs, and educated woman are more attracted to education and health jobs. Increasing household income has a small but positive and significant effect on the probability of rural female participation. In the overlook, due to the frequency of the women population in the age group of 25 to 35 years, and more willingness of women in the age 35 to 44 years to participate in the labor market, and studying ofa significant portion of the rural women, the increase of rural female participation is expected in the years ahead. Thus, it is expected policy maker to create new job opportunities for the employment of educated women and take the necessary plan to improve the current situation for women.Keywords: female participation rate, rural area, provincial data, pseudo-panel data method
Procedia PDF Downloads 93825 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel
Authors: M. El-haj, Z. Olama, H. Holail
Abstract:
Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi
Procedia PDF Downloads 410824 Factors Influencing Capital Structure: Evidence from the Oil and Gas Industry of Pakistan
Authors: Muhammad Tahir, Mushtaq Muhammad
Abstract:
Capital structure is one of the key decisions taken by the financial managers. This study aims to investigate the factors influencing capital structure decision in Oil and Gas industry of Pakistan using secondary data from published annual reports of listed Oil and Gas Companies of Pakistan. This study covers the time-period from 2008-2014. Capital structure can be affected by profitability, firm size, growth opportunities, dividend payout, liquidity, business risk, and ownership structure. Panel data technique with Ordinary least square (OLS) regression model has been used to find the impact of set of explanatory variables on the capital structure using the Stata. OLS regression results suggest that dividend payout, firm size and government ownership have the most significant impact on financial leverage. Dividend payout and government ownership are found to have significant negative association with financial leverage however firm size indicated positive relationship with financial leverage. Other variables having significant link with financial leverage includes growth opportunities, liquidity and business risk. Results reveal significant positive association between growth opportunities and financial leverage whereas liquidity and business risk are negatively correlated with financial leverage. Profitability and managerial ownership exhibited insignificant relationship with financial leverage. This study contributes to existing Managerial Finance literature with certain managerial implications. Academically, this research study describes the factors affecting capital structure decision of Oil and Gas Companies in Pakistan and adds latest empirical evidence to existing financial literature in Pakistan. Researchers have studies capital structure in Pakistan in general and industry at specific, nevertheless still there is limited literature on this issue. This study will be an attempt to fill this gap in the academic literature. This study has practical implication on both firm level and individual investor/ lenders level. Results of this study can be useful for investors/ lenders in making investment and lending decisions. Further, results of this study can be useful for financial managers to frame optimal capital structure keeping in consideration the factors that can affect capital structure decision as revealed by this study. These results will help financial managers to decide whether to issue stock or issue debt for future investment projects.Keywords: capital structure, multicollinearity, ordinary least square (OLS), panel data
Procedia PDF Downloads 292823 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 274822 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 249821 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process
Authors: Johannes Gantner, Michael Held, Matthias Fischer
Abstract:
The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation
Procedia PDF Downloads 285820 The Effects of Scientific Studies on the Future Fashion Trends
Authors: Basak Ozkendirci
Abstract:
The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles
Procedia PDF Downloads 336819 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India
Authors: Ajai Singh
Abstract:
Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation
Procedia PDF Downloads 368818 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection
Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami
Abstract:
A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.Keywords: sol gel, coating, corrosion, XPS
Procedia PDF Downloads 126817 Multimodal Database of Retina Images for Africa: The First Open Access Digital Repository for Retina Images in Sub Saharan Africa
Authors: Simon Arunga, Teddy Kwaga, Rita Kageni, Michael Gichangi, Nyawira Mwangi, Fred Kagwa, Rogers Mwavu, Amos Baryashaba, Luis F. Nakayama, Katharine Morley, Michael Morley, Leo A. Celi, Jessica Haberer, Celestino Obua
Abstract:
Purpose: The main aim for creating the Multimodal Database of Retinal Images for Africa (MoDRIA) was to provide a publicly available repository of retinal images for responsible researchers to conduct algorithm development in a bid to curb the challenges of ophthalmic artificial intelligence (AI) in Africa. Methods: Data and retina images were ethically sourced from sites in Uganda and Kenya. Data on medical history, visual acuity, ocular examination, blood pressure, and blood sugar were collected. Retina images were captured using fundus cameras (Foru3-nethra and Canon CR-Mark-1). Images were stored on a secure online database. Results: The database consists of 7,859 retinal images in portable network graphics format from 1,988 participants. Images from patients with human immunodeficiency virus were 18.9%, 18.2% of images were from hypertensive patients, 12.8% from diabetic patients, and the rest from normal’ participants. Conclusion: Publicly available data repositories are a valuable asset in the development of AI technology. Therefore, is a need for the expansion of MoDRIA so as to provide larger datasets that are more representative of Sub-Saharan data.Keywords: retina images, MoDRIA, image repository, African database
Procedia PDF Downloads 122