Search results for: Fiber Metal Laminate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3634

Search results for: Fiber Metal Laminate

754 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations

Authors: Lori W. Gordon, Karen A. Jones

Abstract:

Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.

Keywords: communications, global, infrastructure, technology

Procedia PDF Downloads 56
753 Cocoon Characterization of Sericigenous Insects in North-East India and Prospects

Authors: Tarali Kalita, Karabi Dutta

Abstract:

The North Eastern Region of India, with diverse climatic conditions and a wide range of ecological habitats, makes an ideal natural abode for a good number of silk-producing insects. Cocoon is the economically important life stage from where silk of economic importance is obtained. In recent years, silk-based biomaterials have gained considerable attention, which is dependent on the structure and properties of the silkworm cocoons as well as silk yarn. The present investigation deals with the morphological study of cocoons, including cocoon color, cocoon size, shell weight and shell ratio of eleven different species of silk insects collected from different regions of North East India. The Scanning Electron Microscopic study and X-ray photoelectron spectroscopy were performed to know the arrangement of silk threads in cocoons and the atomic elemental analysis, respectively. Further, collected cocoons were degummed and reeled/spun on a reeling machine or spinning wheel to know the filament length, linear density and tensile strength by using Universal Testing Machine. The study showed significant variation in terms of cocoon color, cocoon shape, cocoon weight and filament packaging. XPS analysis revealed the presence of elements (Mass %) C, N, O, Si and Ca in varying amounts. The wild cocoons showed the presence of Calcium oxalate crystals which makes the cocoons hard and needs further treatment to reel. In the present investigation, the highest percentage of strain (%) and toughness (g/den) were observed in Antheraea assamensis, which implies that the muga silk is a more compact packing of molecules. It is expected that this study will be the basis for further biomimetic studies to design and manufacture artificial fiber composites with novel morphologies and associated material properties.

Keywords: cocoon characterization, north-east India, prospects, silk characterization

Procedia PDF Downloads 61
752 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: additive technologies, gas turbine engine, powder technology, turbine wheel

Procedia PDF Downloads 290
751 Co-Immobilization of Palladium Nanoparticles and Polyoxometalate into the Cavities of the Mesocellular Foams: A Biomimetic Cooperative Catalytic System for Aerobic Oxidation of Alcohols under Green Conditions

Authors: Saeed Chehri, Sirvan Moradi, Amin Rostami

Abstract:

Cooperative catalyst systems have been developed as highly promising sustainable alternatives to traditional catalysts. In these catalysts, two or more catalytic centers cooperate to reduce the energy of chemical transformations. In nature, such systems are abundantly seen in metalloenzymes that use metal and an organic cofactor. We have designed a reusable cooperative catalyst oxidation system consisting of palladium nanoparticles and polyoxometalate. This biomimetic cooperative catalytic system was synthesized by the stepwise immobilization of palladium nanoparticlesandpolyoxometalateinto the same cavity of siliceous mesocellularfoams (Pd-POM@MCF)and wascharacterizedby SEM, EDX, FT-IR, TGAand ICP techniques. POM-Pd@MCF/HQexhibits high activity toward aerobic oxidation of alcohols to the corresponding carbonyl compoundsin water solvent at room temperature. The major novelties and advantages of this oxidation method are as follows: (i) this is the first report of the co-immobilization of polyoxometalateand palladium for use as a robust and highlyefficient heterogeneouscooperative oxidative nanocatalyst system for aerobic oxidation of alcohols, (ii) oxidation of alcoholswere performed using an ideal oxidant with good to high yields in a green solvent at ambient temperature and (iii) the immobilization of the oxygen-activating catalyst(polyoxometalate) and oxidizing catalyst (Pd) onto MCF provide practical cooperative catalyst the system that can be reused several times without a significant loss of activity (vi) the methodsconform to several of the guiding principles of green chemistry.

Keywords: palladium nanoparticles, polyoxometalate, reusable cooperative catalytic system, biomimetic oxidation reaction

Procedia PDF Downloads 91
750 Assessment of Zinc Content in Nuts by Atomic Absorption Spectrometry Method

Authors: Katarzyna Socha, Konrad Mielcarek, Grzegorz Kangowski, Renata Markiewicz-Zukowska, Anna Puscion-Jakubik, Jolanta Soroczynska, Maria H. Borawska

Abstract:

Nuts have high nutritional value. They are a good source of polyunsaturated fatty acids, dietary fiber, vitamins (B₁, B₆, E, K) and minerals: magnesium, selenium, zinc (Zn). Zn is an essential element for proper functioning and development of human organism. Due to antioxidant and anti-inflammatory properties, Zn has an influence on immunological and central nervous system. It also affects proper functioning of reproductive organs and has beneficial impact on the condition of skin, hair, and nails. The objective of this study was estimation of Zn content in edible nuts. The research material consisted of 10 types of nuts, 12 samples of each type: almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios, and walnuts. The samples of nuts were digested in concentrated nitric acid using microwave mineralizer (Berghof, Germany). The concentration of Zn was determined by flame atomic absorption spectrometry method with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. For comparison between the groups, t-Student test was used. The highest content of Zn was shown in pine nuts and cashews: 78.57 ± 21.9, 70.02 ± 10,2 mg/kg, respectively, significantly higher than in other types of nuts. The lowest content of Zn was found in macadamia nuts: 16.25 ± 4.1 mg/kg. The consumption of a standard 42-gram portion of almonds, brazil nuts, cashews, peanuts, pecans, and pine nuts covers the daily requirement for Zn above 15% of recommended daily allowances (RDA) for women, while in the case of men consumption all of the above types of nuts, except peanuts. Selected types of nuts can be a good source of Zn in the diet.

Keywords: atomic absorption spectrometry, microelement, nuts, zinc

Procedia PDF Downloads 172
749 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment

Authors: G. Kabir, A. M. Mohammed, M. A. Bawa

Abstract:

The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.

Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss

Procedia PDF Downloads 278
748 Numerical Study of Jet Impingement Heat Transfer

Authors: A. M. Tiara, Sudipto Chakraborty, S. K. Pal

Abstract:

Impinging jets and their different configurations are important from the viewpoint of the fluid flow characteristics and their influence on heat transfer from metal surfaces due to their complex flow characteristics. Such flow characteristics results in highly variable heat transfer from the surface, resulting in varying cooling rates which affects the mechanical properties including hardness and strength. The overall objective of the current research is to conduct a fundamental investigation of the heat transfer mechanisms for an impinging coolant jet. Numerical simulation of the cooling process gives a detailed analysis of the different parameters involved even though employing Computational Fluid Dynamics (CFD) to simulate the real time process, being a relatively new research area, poses many challenges. The heat transfer mechanism in the current research is actuated by jet cooling. The computational tool used in the ongoing research for simulation of the cooling process is ANSYS Workbench software. The temperature and heat flux distribution along the steel strip with the effect of various flow parameters on the heat transfer rate can be observed in addition to determination of the jet impingement patterns, which is the major aim of the present analysis. Modelling both jet and air atomized cooling techniques using CFD methodology and validating with those obtained experimentally- including trial and error with different models and comparison of cooling rates from both the techniques have been included in this work. Finally some concluding remarks are made that identify some gaps in the available literature that have influenced the path of the current investigation.

Keywords: CFD, heat transfer, impinging jets, numerical simulation

Procedia PDF Downloads 217
747 Polymer Patterning by Dip Pen Nanolithography

Authors: Ayse Cagil Kandemir, Derya Erdem, Markus Niederberger, Ralph Spolenak

Abstract:

Dip Pen nanolithography (DPN), which is a tip based method, serves a novel approach to produce nano and micro-scaled patterns due to its high resolution and pattern flexibility. It is introduced as a new constructive scanning probe lithography (SPL) technique. DPN delivers materials in the form of an ink by using the tip of a cantilever as pen and substrate as paper in order to form surface architectures. First studies rely on delivery of small organic molecules on gold substrate in ambient conditions. As time passes different inks such as; polymers, colloidal particles, oligonucleotides, metallic salts were examined on a variety of surfaces. Discovery of DPN also enabled patterning with multiple inks by using multiple cantilevers for the first time in SPL history. Specifically, polymer inks, which constitute a flexible matrix for various materials, can have a potential in MEMS, NEMS and drug delivery applications. In our study, it is aimed to construct polymer patterns using DPN by studying wetting behavior of polymer on semiconductor, metal and polymer surfaces. The optimum viscosity range of polymer and effect of environmental conditions such as humidity and temperature are examined. It is observed that there is an inverse relation with ink viscosity and depletion time. This study also yields the optimal writing conditions to produce consistent patterns with DPN. It is shown that written dot sizes increase with dwell time, indicating that the examined writing conditions yield repeatable patterns.

Keywords: dip pen nanolithography, polymer, surface patterning, surface science

Procedia PDF Downloads 375
746 Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding

Authors: Ahmed Raza Khan

Abstract:

Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications.

Keywords: strain engineering, folding, WS₂, Kelvin probe force microscopy, KPFM, surface potential, photo current, layer dependence

Procedia PDF Downloads 88
745 Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks

Authors: Sara Gardideh, Mansoor Barati

Abstract:

The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation.

Keywords: particle size, thermogravimetry, thermal-treatment, serpentine

Procedia PDF Downloads 62
744 Characterization and Nanostructure Formation of Banana Peels Nanosorbent with Its Application

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

Characterization and nanostructure formation of banana peels as sorbent material are described in this paper. The transformation of this agricultural waste via mechanical milling to enhance its properties such as changed in microstructure and surface area for water pollution control and other applications were studied. Mechanical milling was employed using planetary continuous milling machine with ethanol as a milling solvent and the samples were taken at time intervals between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed three typical structures with different deformation mechanisms and the grain-sizes within the range of (71-12 nm), nanostructure of the particles and fibres. The particle size decreased from 65µm to 15 nm as the milling progressed for a period of 30 h. The morphological properties of the materials indicated that the particle shapes becomes regular and uniform as the milling progresses. Furthermore, particles fracturing resulted in surface area increment from 1.0694-4.5547 m2/g. The functional groups responsible for the banana peels capacity to coordinate and remove metal ions, such as the carboxylic and amine groups were identified at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption or any application will depend on the composition of the pollutant to be eradicated.

Keywords: characterization, nanostructure, nanosorbent, eco-friendly, banana peels, mechanical milling, water quality

Procedia PDF Downloads 254
743 Behavior of Pet Packaging on Quality Characteristics of an Algerian Virgin Olive Oil Under Various Conditions of Storage

Authors: Hamitri-Guerfi Fatiha, Mekimene Lekhder, Madani Khodir, Youyou Ahcene

Abstract:

Virgin olive oil is appreciated by consumers, the quality of the oil is regulated by the international olive oil council depends on its chemical composition, so, the correct packing conditions are a prerequisite to preserve oil color, flavor, and nutriments, from production to consumption. The contact of food with various materials of packaging, since the production, until their consumption constitutes one of the essential aspects of food safety (directive 76/833/CEE). In Algeria, plastic bottles, although, they are economic and light are largely used at packaging olive oil but not used in other countries. This is due to migration phenomena that can occur from these materials. Thus, the goal of this work is to examine the physicochemical behavior of the couple packaging plastic-oil during their exposure to three temperatures corresponding to the conditions of storage applied in Algeria. Like, it is difficult to compare blowers of bottles which are heavy engineering, it comes out from this study that the effect of heat, the absorption of water, the constraints of storage of acidity, as well as the composition of oil, the PET bottles showed a remarkable structural instability, this defect of quality was confirmed by the analysis of morphology by electronic scan microscopy. These bottles present a total migration significantly higher than the threshold of acceptance. Moreover, a metal contamination of oil by its packaging was confirmed by the spectroscopy of atomic absorption and a microanalysis. The differences observed between the results of the microanalysis applied and the mechanical characterizations of the various bottles are reported, showing the reality of the container-contents exchanges.

Keywords: interaction, stability, pet, virgin olive oil

Procedia PDF Downloads 424
742 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels

Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira

Abstract:

Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.

Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel

Procedia PDF Downloads 439
741 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging

Procedia PDF Downloads 104
740 Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy

Authors: Balram Panjwani, Bernd Wittgens, Jan Erik Olsen, Stein Tore Johansen

Abstract:

The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection.

Keywords: CFD, combustion chamber, arc furnace, energy recovery

Procedia PDF Downloads 298
739 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting

Authors: Karim Kheloufi, El Hachemi Amara

Abstract:

In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

Keywords: laser cutting, numerical simulation, heat transfer, fluid flow

Procedia PDF Downloads 305
738 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels

Authors: Martin Elstner

Abstract:

Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.

Keywords: bioanalytics, hydrogels, information processing, microvalve

Procedia PDF Downloads 284
737 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type

Procedia PDF Downloads 262
736 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 84
735 A Comparative Study on the Synthesis, Characterizations and Biological (Antibacterial and Antifungal) Activities of Zinc Doped Silica Oxide Nanoparticles Based on Various Solvents

Authors: Muhammad Arshad, Ghulam Hussain Bhatti, Abdul Qayyum

Abstract:

Zinc-doped silica oxide nanoparticles having size 7.93nm were synthesized by the deposition precipitation method by using different solvents (acetonitrile, n-hexane, isoamylalchol). Biological potential such as antibacterial activities against Bacillussubtilusand Escherichia coli, and antifungal activities against Candida parapsilosis and Aspergilusniger were also investigated by Disc diffusion method. Different characterizations techniques including Fournier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermo-gravimeteric Analysis (TGA), Atomic forced microscopy (AFM), and Dynamic Light Scattering (DLS) were used. FT-IR characterization confirmed the presence of metal oxide bond (SiO2) while XRD showed the hexagonal structure. SEM and TEM characterization showed the morphology of nanoparticles. AFM study showed good particle size distribution as depicted by a histogram. DLS study showed the gradual decease in the size of nanoparticles from 24.86nm to 13.24 nm. Highest antibacterial activities revealed by acetonitrile solvents (6%and 4.5%) followed by isoamylalchol (3% and 2.4%) while n-hexane solvent showed the lowest activity (2%and 1%) respectively. Higher antifungal activities exhibited by n-hexane (0.34 % and 0.43%) followed by isoamylalchol (0.27% and 0.19%) solvent while acetonitrile (0.21% and 0.17%) showed least activity respectively. Statistical analysis by using one-way ANOVA also indicated the significant results of both biological activities.

Keywords: nanoparticles, precipitation methods, antibacterial, antifungal, characterizations

Procedia PDF Downloads 181
734 Hydrometallurgical Recovery of Cobalt, Nickel, Lithium, and Manganese from Spent Lithium-Ion Batteries

Authors: E. K. Hardwick, L. B. Siwela, J. G. Falconer, M. E. Mathibela, W. Rolfe

Abstract:

Lithium-ion battery (LiB) demand has increased with the advancement in technologies. The applications include electric vehicles, cell phones, laptops, and many more devices. Typical components of the cathodes include lithium, cobalt, nickel, and manganese. Recycling the spent LiBs is necessary to reduce the ecological footprint of their production and use and to have a secondary source of valuable metals. A hydrometallurgical method was investigated for the recovery of cobalt and nickel from LiB cathodes. The cathodes were leached using a chloride solution. Ion exchange was then used to recover the chloro-complexes of the metals. The aim of the research was to determine the efficiency of a chloride leach, as well as ion exchange operating capacities that can be achieved for LiB recycling, and to establish the optimal operating conditions (ideal pH, temperature, leachate and eluant, flowrate, and reagent concentrations) for the recovery of the cathode metals. It was found that the leaching of the cathodes could be hindered by the formation of refractory metal oxides of cathode components. A reducing agent was necessary to improve the leaching rate and efficiency. Leaching was achieved using various chloride-containing solutions. The chloro-complexes were absorbed by the ion exchange resin and eluted to produce concentrated cobalt, nickel, lithium, and manganese streams. Chromatographic separation of these elements was achieved. Further work is currently underway to determine the optimal operating conditions for the recovery by ion exchange.

Keywords: cobalt, ion exchange, leachate formation, lithium-ion batteries, manganese, nickel

Procedia PDF Downloads 76
733 Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys

Authors: Michael Munther, Keivan Davami

Abstract:

One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications.

Keywords: additive manufacturing, Inconel 718, laser shock peening, residual stresses

Procedia PDF Downloads 104
732 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 139
731 Engineered Reactor Components for Durable Iron Flow Battery

Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake

Abstract:

Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.

Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry

Procedia PDF Downloads 55
730 Management of Fungal Diseases of Onion (Allium cepa L.) by Using Plant Extracts

Authors: Shobha U. Jadhav, R. S. Saler

Abstract:

Onion is most Important Vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but the fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil borne pathogens of onion. Effect of three different plant extract (Datura metel, Pongamia pinnata, Ipomoea palmata) at five different concentration Viz, 10,25,50,75 and 100 percentage on these pathogens was studied by food poisoning techniquie. Detura metal gave 94.73% growth of Alternaria porri at 10% extract concentraton and 26.31% growth in 100% extract concentration. As compared to Fusarium oxysporium, and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Pongamia pinnata L. at 10% extract concentration 84.21% growth and at 100% extract concentration 36.84% growth of Stemphylium vesicarium was observed. Stemphylium vesicarium give good in inhibitory response as compared to Alternaria porri and Fusarium oxysporium. Ipomoea palmata in 10% extract concentration 92% growth and in 100% extract concentration 40% growth of Fusarium oxysporium was recorded. Fusarium oxysporium give good inhibitory response as compared to Alternaria porri and, Stemphylium vesicarium.

Keywords: pathogen, onion, plant extract, Allium cepa L.

Procedia PDF Downloads 433
729 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: friction stir welding, tungsten inert gaz, aluminum, microstructure

Procedia PDF Downloads 254
728 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃

Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev

Abstract:

Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.

Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction

Procedia PDF Downloads 237
727 Mechanism of Melanin Inhibition of Morello Flavone- 7″- Sulphate and Sargaol extracts from Garcinia livingstonei (Clusiaceae): Homology Modelling, Molecular Docking, and Molecular Dynamics Simulations

Authors: Ncoza Dlova, Tivani Mashamba-Thompson

Abstract:

Garcinia livingstonei (Clusiaceae) extracts, morelloflavone- 7″- sulphate and sargaol were shown to be effective against hyper-pigmentation through inhibition of tyrosinase enzyme, in vitro . The aim of this study is to elucidate the structural mechanism through which morelloflavone- 7″- sulphate and sargaol binds human tyrosinase. Implementing a homology model to construct a tyrosinase model using the crystal structure of a functional unit from Octopus hemocyanin (PDB: 1JS8) as a reference template enabled us to create a human tyrosinase model. Molecular dynamics and binding free energy calculations were optimized to enable molecular dynamics simulation of the copper dependent inhibitors. Results show the importance of the hydrogen bond formation morelloflavone- 7″- sulphate and sargaol between compound and active site residues. Both complexes demonstrated the metallic coordination between compound and arginine residue as well as copper ions within the active site. The comprehensive molecular insight gained from this study should be vital in understanding the binding mechanism morelloflavone- 7″- sulphate and sargaol. Moreover, these results will assist in the design of novel of metal ion dependent enzyme inhibitors as potential anti-hyper-pigmentation disorder therapies.

Keywords: hyper-pigmentation disorders, dyschromia African skin, morelloflavone- 7″- sulphate, sagoal

Procedia PDF Downloads 375
726 Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values

Authors: Xin Wu, Yongfeng Zhao, Qingxiang Meng

Abstract:

In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition.

Keywords: chemical compositions, crop residues, efficient energy values, steam explosion

Procedia PDF Downloads 225
725 Determination of the Volatile Organic Compounds, Antioxidant and Antimicrobial Properties of Microwave-Assisted Green Extracted Ficus Carica Linn Leaves

Authors: Pelin Yilmaz, Gizemnur Yildiz Uysal, Elcin Demirhan, Belma Ozbek

Abstract:

The edible fig plant, Ficus carica Linn, belongs to the Moraceae family, and the leaves are mainly considered agricultural waste after harvesting. It has been demonstrated in the literature that fig leaves contain appealing properties such as high vitamins, fiber, amino acids, organic acids, and phenolic or flavonoid content. The extraction of these valuable products has gained importance. Microwave-assisted extraction (MAE) is a method using microwave energy to heat the solvents, thereby transferring the bioactive compounds from the sample to the solvent. The main advantage of the MAE is the rapid extraction of bioactive compounds. In the present study, the MAE was applied to extract the bioactive compounds from Ficus carica L. leaves, and the effect of microwave power (180-900 W), extraction time (60-180 s), and solvent to sample amount (mL/g) (10-30) on the antioxidant property of the leaves. Then, the volatile organic component profile was determined at the specified extraction point. Additionally, antimicrobial studies were carried out to determine the minimum inhibitory concentration of the microwave-extracted leaves. As a result, according to the data obtained from the experimental studies, the highest antimicrobial properties were obtained under the process parameters such as 540 W, 180 s, and 20 mL/g concentration. The volatile organic compound profile showed that isobergapten, which belongs to the furanocoumarins family exhibiting anticancer, antioxidant, and antimicrobial activity besides promoting bone health, was the main compound. Acknowledgments: This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2021-4409. The authors would like to acknowledge the financial support from Tubitak 1515 - Frontier R&D Laboratory Support Programme.

Keywords: Ficus carica Linn leaves, volatile organic component, GC-MS, microwave extraction, isobergapten, antimicrobial

Procedia PDF Downloads 45