Search results for: trophic levels
4549 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 324548 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis
Procedia PDF Downloads 3124547 An Industrial Wastewater Management Using Cloud Based IoT System
Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.
Abstract:
Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.Keywords: sensors, pH, CO₂, temperature, turbidity
Procedia PDF Downloads 1104546 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1494545 [Keynote Talk]: Role of Leaders in Managing Employees’ Dysfunctional Behavior at Workplace
Authors: Aya Maher, Pakinam Youssef
Abstract:
The objective of this theoretical study is to explore in depth the role of leaders in managing employees’ dysfunctional behavior at workplace in an effort to recommend strategies and solutions for these destructive behaviors that affect employees’ performance. The significance of the study lies in the fact that dysfunctional behavior has been widely spread in almost all organizations, public and private, with its very destructive manifestations. Dysfunctional behavior may be classified into thefts, sabotage, sexual harassment, jealousy, envy, revenge, vulgarity all of which affect employees’ moral, self-esteem and satisfaction level drastically which will be reflected negatively on their performance and productivity. The main research question will focus on the role of leaders in managing employees’ dysfunctional behavior effectively at the workplace through the different strategies and control measures. In this study, the data will be collected from different academic literature and through some primary data by conducting interviews with some public and private employees from different managerial levels and fields.Keywords: dysfunctional behavior, employees deviant behavior, employees moral, leaders role
Procedia PDF Downloads 3494544 A Survey on the Blockchain Smart Contract System: Security Strengths and Weaknesses
Authors: Malaw Ndiaye, Karim Konate
Abstract:
Smart contracts are computer protocols that facilitate, verify, and execute the negotiation or execution of a contract, or that render a contractual term unnecessary. Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. Smart contracts have become lucrative and profitable targets for attackers because they can hold a great amount of money. Smart contracts, although widely used in blockchain technology, are far from perfect due to security concerns. Since there are recent studies on smart contract security, none of them systematically study the strengths and weaknesses of smart contract security. Some have focused on an analysis of program-related vulnerabilities by providing a taxonomy of vulnerabilities. Other studies are responsible for listing the series of attacks linked to smart contracts. Although a series of attacks are listed, there is a lack of discussions and proposals on improving security. This survey takes stock of smart contract security from a more comprehensive perspective by correlating the level of vulnerability and systematic review of security levels in smart contracts.Keywords: blockchain, Bitcoin, smart contract, criminal smart contract, security
Procedia PDF Downloads 1684543 The Potential of Fly Ash Wastes to Improve Nutrient Levels in Agricultural Soils: A Material Flow Analysis Case Study from Riau District, Indonesia
Authors: Hasan Basri Jumin
Abstract:
Fly ash sewage of pulp and paper industries when processed with suitable process and true management may possibly be used fertilizer agriculture purposes. The objective of works is to evaluate re-cycling possibility of fly ash waste to be applied as a fertilizer for agriculture use. Fly ash sewage was applied to maize with 28 g/plant could be increased significantly the average of dry weigh from dry weigh of seed increase from 6.7 g/plant into 10.3 g/plant, and net assimilation rates could be increased from 14.5 mg.m-2.day-1 into 35.4 mg.m-2 day-1. Therefore, production per hectare was reached 3.2 ton/ha. The chemical analyses of fly ash waste indicated that, there are no exceed threshold content of dangerous metals and biology effects. Mercury, arsenic, cadmium, chromium, cobalt, lead, and molybdenum contents as heavy metal are lower than the threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. This experiment indicated that fly ash sewage in lower doses until 28 g/plant could be applied as substitution fertilizer for agriculture use and it could be eliminate the environment pollution.Keywords: fly-ash, fertilizer, maize, sludge-sewage pollutant, waste
Procedia PDF Downloads 5824542 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 1434541 Evolution of Mineral Nutrition in Two Species of Atriplex (halimus and canescens) under Salt Stress
Authors: Z. Mahi, L. Marousset, C. Roudaut, M. Belkhodja, R. Lemoine
Abstract:
The strong accumulation of salts in the soil as well as in irrigation water greatly disrupts the growth and development of almost all plants. The study of these disturbances in halophytes helps provide better guidance on the deteriorating effect of salinity. Evaluation of salt stress in two species of Atriplex (halimus and canescens) through the study of mineral nutrition (dosage of sodium and potassium) shows a variability of responses. The results show that the Na+ ion accumulates in the three organs whatever the applied concentration. This accumulation increases with the high salt concentrations in halimus whereas in canescens, 600 mM treatment shows a reduction of the amount of this element. A decrease in the amount of potassium is observed for all organs except halimus rods 100 mM. Unlike halimus, canescens K + accumulates in high concentrations of salt at the roots and leaves. The ratio Na+/K+ decreases the salt by halimus against it increases in levels canescens roots and treated with high concentrations of NaCl (600 mM) leaves.Keywords: Atriplex, canescens, halimus, Na +, K +, Na Cl, tolerance
Procedia PDF Downloads 3574540 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing
Authors: S. Vignesh, K. S. Rangasamy
Abstract:
The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.Keywords: CCD, optics, image processing, D3CIP
Procedia PDF Downloads 3574539 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 414538 Beneficial Effect of Biotin in Combination with Canagliflozin on High Fat Diet Induced Diabetes in Rats
Authors: Rayhana Begum, HongBin Wang, Nur Alam Siddiquee, Md.Yasin Ahmed
Abstract:
Biotin treatment has significant effects on blood glucose, and pharmacological doses of biotin improve hyperglycemia. The present study was aimed to investigate the efficacy and safety of biotin in combination with canagliflozin in improving glycemic control on High Fat Diet-induced diabetes in Rats. Thirty male rats were divided into five groups (six rats /group): control, high fat diet (HFD), canagliflozin (CAG), biotin (BIO), and CAG + BIO. The treatments with CAG and /or BIO significantly reduced the body weight gain, blood glucose and HbA1c levels, whereas CAG in combination with BIO revealed greater glycemic improvement than CAG monotherapy. The treatment with CAG and /or BIO causes significant change in lipid profile and CK level while the treatment with CAG in combination with BIO showed better results as compared with CAG monotherapy. Furthermore, combination of biotin with CAG improved the pancreatic and cardiac damage when compared with other treated groups.Keywords: canagliflozin, biotin, HbA1c, lipid profile
Procedia PDF Downloads 1604537 Bioactivity of Peptides from Two Mushrooms
Authors: Parisa Farzaneh, Azade Harati
Abstract:
Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing.Keywords: bio-peptide, mushrooms, gastrointestinal enzymes, bioactivity
Procedia PDF Downloads 594536 Isolation of Vibrio harveyi and Vibrio alginolyticus Strains from Cultured Seabass (Dicentrarchus labrax L.) and Seabream (Sparus auratus L.) in Egypt
Authors: M. Khallaf, R. Khalil, H. Ghetas
Abstract:
In the present study, V. harveyi and V. alginolyticus were isolated from cultured seabass and seabream at Damietta Governorate, Egypt, during summer season. Isolates were biochemically and molecularly identified using primers for Vhh and Collagenase genes. The most prominent clinical observations of diseased fish were exophthalmia, abdominal distension, and multifocal cutaneous hemorrhagic ulceration on the dorsal musculature and caudal peduncle. Physicochemical characteristics of water samples indicated that the unionized ammonia, nitrate, and hydrogen sulphate concentrations were higher than the acceptable limits. Heavy metals concentrations in water samples exhibited higher concentrations than the permissible levels for fish culture, which was considered as chemical stressors that increase the prevalence of these bacterial diseases. Immune parameters were lower in diseased seabass and seabream than apparently healthy fish. Lesions of different fish organs were identified histopathologically.Keywords: seabass, seabream, Vibrio alginolyticus, Vibrio harveyi
Procedia PDF Downloads 1174535 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong
Authors: Cynthia Sau Chun Yip, Richard Fielding
Abstract:
High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption
Procedia PDF Downloads 3114534 Validation of Codes Dragon4 and Donjon4 by Calculating Keff of a Slowpoke-2 Reactor
Authors: Otman Jai, Otman Elhajjaji, Jaouad Tajmouati
Abstract:
Several neutronic calculation codes must be used to solve the equation for different levels of discretization which all necessitate a specific modelisation. This chain of such models, known as a calculation scheme, leads to the knowledge of the neutron flux in a reactor from its own geometry, its isotopic compositions and a cross-section library. Being small in size, the 'Slowpoke-2' reactor is difficult to model due to the importance of the leaking neutrons. In the paper, the simulation model is presented (geometry, cross section library, assumption, etc.), and the results obtained by DRAGON4/DONJON4 codes were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor and the experimental data. Criticality calculations have been performed to verify and validate the model. Since created model properly describes the reactor core, it can be used for calculations of reactor core parameters and for optimization of research reactor application.Keywords: transport equation, Dragon4, Donjon4, neutron flux, effective multiplication factor
Procedia PDF Downloads 4704533 Energy Efficiency in Hot Arid Climates Code Compliance and Enforcement for Residential Buildings
Authors: Mohamed Edesy, Carlo Cecere
Abstract:
This paper is a part of an ongoing research that proposes energy strategies for residential buildings in hot arid climates. In Egypt, the residential sector is dominated by increase in consumption rates annually. A building energy efficiency code was introduced by the government in 2005; it indicates minimum design and application requirements for residential buildings. Submission is mandatory and should lead to about 20% energy savings with an increase in comfort levels. However, compliance is almost nonexistent, electricity is subsidized and incentives to adopt energy efficient patterns are very low. This work presents an overview of the code and analyzes the impact of its introduction on different sectors. It analyses compliance barriers and indicates challenges that stand in the way of a realistic enforcement. It proposes an action plan for immediate code enforcement, updating current code to include retrofit, and development of rating systems for buildings. This work presents a broad national plan for energy efficiency empowerment in the residential sector.Keywords: energy efficiency, housing, energy policies, code enforcement
Procedia PDF Downloads 3474532 Geostatistical and Geochemical Study of the Aquifer System Waters Complex Terminal in the Valley of Oued Righ-Arid Area Algeria
Authors: Asma Bettahar, Imed Eddine Nezli, Sameh Habes
Abstract:
Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm) .The present article is a statistical approach by two multi methods various complementary (ACP, CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.Keywords: complex terminal, mineralization, oued righ, statistical approach
Procedia PDF Downloads 3874531 The Effects of Eight Weeks of Interval Endurance Training on hs-CRP Levels and Anthropometric Parameters in Overweight Men
Authors: S. Khoshemehry, M. J. Pourvaghar
Abstract:
Inflammatory markers are known as the main predictors of cardiovascular diseases. This study aimed at determining the effect of 8 weeks of interval endurance training on hs-CRP level and some anthropometric parameters in overweight men. Following the call for participation in research project in Kashan, 73 volunteers participated in it and constituted the statistical population of the study. Then, 28 overweight young men from the age of 22 to 25 years old were randomly assigned into two groups of experimental and control group (n=14). Anthropometric and the blood sample was collected before and after the termination of the program for measuring hs-CRP. The interval endurance program was performed at 60 to 75% of maximum heart rate in 2 sessions per week for 8 weeks. Kolmogorov-Smirnov test was used to test whether two samples come from the same distribution and T-test was used to assess the difference of two groups which were statistically significant at the level of 0.05. The result indicated that there was a significant difference between the hs-RP, weight, BMI and W/H ratio of overweight men in posttest in the exercise group (P≤0.05) but not in the control group. Interval endurance training program causes decrease in hs-CRP level and anthropometric parameters.Keywords: interval endurance training program, HS-CRP, overweight, anthropometric
Procedia PDF Downloads 3064530 Teachers’ Reactions, Learning, Organizational Support, and Use of Lesson Study for Transformative Assessment
Authors: Melaku Takele Abate, Abbi Lemma Wodajo, Adula Bekele Hunde
Abstract:
This study aimed at exploring mathematics teachers' reactions, learning, school leaders’ support, and use of the Lesson Study for Transformative Assessment (LSforTA) program ideas in practice. The LSforTA program was new, and therefore, a local and grounded approach was needed to examine teachers’ knowledge and skills acquired using LSforTA. So, a design-based research approach was selected to evaluate and refine the LSforTA approach. The results showed that LSforTA increased teachers' knowledge and use of different levels of mathematics assessment tasks. The program positively affected teachers' practices of transformative assessment and enhanced their knowledge and skills in assessing students in a transformative way. The paper concludes how the LSforTA procedures were adapted in response to this evaluation and provides suggestions for future development and research.Keywords: classroom assessment, feedback practices, lesson study, mathematics, design-based research
Procedia PDF Downloads 554529 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria
Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike
Abstract:
The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.Keywords: influence, land, trend, value
Procedia PDF Downloads 3644528 Large Language Model Powered Chatbots Need End-to-End Benchmarks
Authors: Debarag Banerjee, Pooja Singh, Arjun Avadhanam, Saksham Srivastava
Abstract:
Autonomous conversational agents, i.e., chatbots, are becoming an increasingly common mechanism for enterprises to provide support to customers and partners. In order to rate chatbots, especially ones powered by Generative AI tools like Large Language Models (LLMs), we need to be able to accurately assess their performance. This is where chatbot benchmarking becomes important. In this paper, authors propose the use of a benchmark that they call the E2E (End to End) benchmark and show how the E2E benchmark can be used to evaluate the accuracy and usefulness of the answers provided by chatbots, especially ones powered by LLMs. The authors evaluate an example chatbot at different levels of sophistication based on both our E2E benchmark as well as other available metrics commonly used in the state of the art and observe that the proposed benchmark shows better results compared to others. In addition, while some metrics proved to be unpredictable, the metric associated with the E2E benchmark, which uses cosine similarity, performed well in evaluating chatbots. The performance of our best models shows that there are several benefits of using the cosine similarity score as a metric in the E2E benchmark.Keywords: chatbot benchmarking, end-to-end (E2E) benchmarking, large language model, user centric evaluation.
Procedia PDF Downloads 664527 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi
Authors: Farhan Ali
Abstract:
Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.Keywords: pathogens, wastewater, concentration, effluent
Procedia PDF Downloads 2974526 Association of Overweight and Obesity with Breast Cancer
Authors: Amir Ghasemlouei, Alireza Khalaj
Abstract:
In women, cancer of the breast is one of the most common incident cancer and cause of death from cancer .we reviewed the prevalence of obesity and its association with breast cancer. In this study, a total of 25 articles regarding the subject matter of the article have been presented in which 640 patients were examined that 320 patients with breast cancer and 320 were controls. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman is endogenous estrogen of the tumor and regulate the activities of growth steroids, obesity is a risk factor for breast cancer is confirmed. Our study and other studies show that obesity is a risk factor for breast cancer. And with a weight loss intervention for breast cancer can be prevented in the future.Keywords: breast cancer, review study, obesity, overweight
Procedia PDF Downloads 4534525 Motherhood in the Poetry of Rosario Castellanos: Other Face of Womanhood
Authors: Dovile Kuzminskaite
Abstract:
Rosario Castellanos is one of the most important Mexican writers; in her poetry and essays, she demythologizes social stereotypes about womanhood that were deeply present in Mexican society of the XXth century. In her extent poetic work, Rosario Castellanos demythologizes such concepts as romance, marriage, and motherhood, showing them in a way which did not agree with the norms of the catholic based society of her times. The aim of this research is to analyze the poetry of Rosario Castellanos working on sematic and structural levels and to investigate closely how she represents motherhood, what is the role of mother and the relationship of mother and child in her poems. Also, it is of interest to observe what are the elements used in the process of creating a different concept of motherhood. In order to reflect on this subject, this research will be based on semiotics, queer studies, and the philosophy of Michel Foucault, who introduces the concept of power when reflecting on gender and society. Rosario Castellanos turned into an example of disobedience and otherness for a generation of intellectuals in Spanish speaking countries, and because of this reason, it is of great importance to understand the politic and social statements that are represented by her poetry.Keywords: motherhood, women, poetry, Mexico
Procedia PDF Downloads 1984524 Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides
Authors: Alexandre M. Brighenti
Abstract:
One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha-1), flumioxazin (60 and 120 g ai ha-1), sulfentrazone (150 and 300 g ai ha-1) and two controls (weedy and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha-1), flumioxazin (60 g ha-1) and sulfentrazone (150 g ha-1) were the most selective doses for sunflower crop.Keywords: flumioxazin, Helianthus annuus, S-metolachlor, sulfentrazone, weeds
Procedia PDF Downloads 3604523 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain
Authors: Hafida Bouarfa, Mohamed Abed
Abstract:
The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability
Procedia PDF Downloads 2924522 The Importance of Patenting and Technology Exports as Indicators of Economic Development
Authors: Hugo Rodríguez
Abstract:
The patenting of inventions is the result of an organized effort to achieve technological improvement and its consequent positive impact on the population's standard of living. Technology exports, either of high-tech goods or of Information and Communication Technology (ICT) services, represent the level of acceptance that world markets have of that technology acquired or developed by a country, either in public or private settings. A quantitative measure of the above variables is expected to have a positive and relevant impact on the level of economic development of the countries, measured on this first occasion through their level of Gross Domestic Product (GDP). And in that sense, it not only explains the performance of an economy but the difference between nations. We present an econometric model where we seek to explain the difference between the GDP levels of 178 countries through their different performance in the outputs of the technological production process. We take the variables of Patenting, ICT Exports and High Technology Exports as results of the innovation process. This model achieves an explanatory power for four annual cuts (2000, 2005, 2010 and 2015) equivalent to an adjusted r2 of 0.91, 0.87, 0.91 and 0.96, respectively.Keywords: Development, exports, patents, technology
Procedia PDF Downloads 1104521 Study of Effect of Steering Column Orientation and Operator Platform Position on the Hand Vibration in Compactors
Authors: Sunil Bandaru, Suresh Yv, Srinivas Vanapalli
Abstract:
Heavy machinery especially compactors has more vibrations induced from the compactor mechanism than the engines. Since the operator’s comfort is most important in any of the machines, this paper shows interest in studying the vibrations on the steering wheel for a double drum compactor. As there are no standard procedures available for testing vibrations on the steering wheel of double drum compactors, this paper tries to evaluate the vibrations on the steering wheel by considering most of the possibilities. In addition to the feasibility for the operator to adjust the steering wheel tilt as in the case of automotive, there is an option for the operator to change the orientation of the operator platform for the complete view of the road’s edge on both the ends of the front and rear drums. When the orientation is either +/-180°, the operator will be closer to the compactor mechanism; also there is a possibility for the shuffle in the modes with respect to the operator. Hence it is mandatory to evaluate the vibrations levels in both cases. This paper attempts to evaluate the vibrations on the steering wheel by considering the two operator platform positions and three steering wheel tilting angles.Keywords: FEA, CAE, steering column, steering column orientation position
Procedia PDF Downloads 2254520 Seismic Performance of Isolated Bridge Configurations with Soil Structure Interaction
Authors: Davide Forcellini
Abstract:
The most recent development of earthquake engineering is based on concept of design consisting in prescribed performance rather than the more traditional prescriptive approaches. The paper aims to assess the effects of isolation devices and soil structure interaction on a benchmark bridge adopting a Performance-Based Earthquake Engineering methodology. Several isolated configurations of abutments and pier connections are compared performing the most representative isolation devices. Isolation systems suitability depends on many factors, mainly connected with ground effects. In this regard, the second purpose of this paper is to assess the effects of soil-structure interaction (SSI) on the studied bridge configurations. Contributions of isolation technique and soil structure interaction are assessed evaluating the resistance effects applied to Peak Ground Acceleration (PGA) levels in terms of cost and time repair quantities.Keywords: base isolation, bridge, earthquake engineering, non linearity, PBEE methodology, seismic assessment, soil structure interaction
Procedia PDF Downloads 430