Search results for: thermal stress response
8945 A Finite Element Method Simulation for Rocket Motor Material Selection
Authors: T. Kritsana, P. Sawitri, P. Teeratas
Abstract:
This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.Keywords: rocket motor case, finite element method, principal stress, simulation
Procedia PDF Downloads 4498944 Optimization of Poly-β-Hydroxybutyrate Recovery from Bacillus Subtilis Using Solvent Extraction Process by Response Surface Methodology
Authors: Jayprakash Yadav, Nivedita Patra
Abstract:
Polyhydroxybutyrate (PHB) is an interesting material in the field of medical science, pharmaceutical industries, and tissue engineering because of its properties such as biodegradability, biocompatibility, hydrophobicity, and elasticity. PHB is naturally accumulated by several microbes in their cytoplasm during the metabolic process as energy reserve material. PHB can be extracted from cell biomass using halogenated hydrocarbons, chemicals, and enzymes. In this study, a cheaper and non-toxic solvent, acetone, was used for the extraction process. The different parameters like acetone percentage, and solvent pH, process temperature, and incubation periods were optimized using the Response Surface Methodology (RSM). RSM was performed and the determination coefficient (R2) value was found to be 0.8833 from the quadratic regression model with no significant lack of fit. The designed RSM model results indicated that the fitness of the response variable was significant (P-value < 0.0006) and satisfactory to denote the relationship between the responses in terms of PHB recovery and purity with respect to the values of independent variables. Optimum conditions for the maximum PHB recovery and purity were found to be solvent pH 7, extraction temperature - 43 °C, incubation time - 70 minutes, and percentage acetone – 30 % from this study. The maximum predicted PHB recovery was found to be 0.845 g/g biomass dry cell weight and the purity was found to be 97.23 % using the optimized conditions.Keywords: acetone, PHB, RSM, halogenated hydrocarbons, extraction, bacillus subtilis.
Procedia PDF Downloads 4408943 Dynamic and Thermal Characteristics of Three-Dimensional Turbulent Offset Jet
Authors: Ali Assoudi, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec
Abstract:
Studying the flow characteristics of a turbulent offset jet is an important topic among researchers across the world because of its various engineering applications. Some of the common examples include: injection and carburetor systems, entrainment and mixing process in gas turbine and boiler combustion chambers, Thrust-augmenting ejectors for V/STOL aircrafts and HVAC systems, environmental dischargers, film cooling and many others. An offset jet is formed when a jet discharges into a medium above a horizontal solid wall parallel to the axis of the jet exit but which is offset by a certain distance. The structure of a turbulent offset-jet can be described by three main regions. Close to the nozzle exit, an offset jet possesses characteristic features similar to those of free jets. Then, the entrainment of fluid between the jet, the offset wall and the bottom wall creates a low pressure zone, forcing the jet to deflect towards the wall and eventually attaches to it at the impingement point. This is referred to as the Coanda effect. Further downstream after the reattachment point, the offset jet has the characteristics of a wall jet flow. Therefore, the offset jet has characteristics of free, impingement and wall jets, and it is relatively more complex compared to these types of flows. The present study examines the dynamic and thermal evolution of a 3D turbulent offset jet with different offset height ratio (the ratio of the distance from the jet exit to the impingement bottom wall and the jet nozzle diameter). To achieve this purpose a numerical study was conducted to investigate a three-dimensional offset jet flow through the resolution of the different governing Navier–Stokes’ equations by means of the finite volume method and the RSM second-order turbulent closure model. A detailed discussion has been provided on the flow and thermal characteristics in the form of streamlines, mean velocity vector, pressure field and Reynolds stresses.Keywords: offset jet, offset ratio, numerical simulation, RSM
Procedia PDF Downloads 3048942 Comparison of the Material Response Based on Production Technologies of Metal Foams
Authors: Tamas Mankovits
Abstract:
Lightweight cellular-type structures like metal foams have excellent mechanical properties, therefore the interest in these materials is widely spreading as load-bearing structural elements, e.g. as implants. Numerous technologies are available to produce metal foams. In this paper the material response of closed cell foam structures produced by direct foaming and additive technology is compared. The production technology circumstances are also investigated. Geometrical variations are developed for foam structures produced by additive manufacturing and simulated by finite element method to be able to predict the mechanical behavior.Keywords: additive manufacturing, direct foaming, finite element method, metal foam
Procedia PDF Downloads 1978941 Disaster Management Approach for Planning an Early Response to Earthquakes in Urban Areas
Authors: Luis Reynaldo Mota-Santiago, Angélica Lozano
Abstract:
Determining appropriate measures to face earthquakesarea challenge for practitioners. In the literature, some analyses consider disaster scenarios, disregarding some important field characteristics. Sometimes, software that allows estimating the number of victims and infrastructure damages is used. Other times historical information of previous events is used, or the scenarios’informationis assumed to be available even if it isnot usual in practice. Humanitarian operations start immediately after an earthquake strikes, and the first hours in relief efforts are important; local efforts are critical to assess the situation and deliver relief supplies to the victims. A preparation action is prepositioning stockpiles, most of them at central warehouses placed away from damage-prone areas, which requires large size facilities and budget. Usually, decisions in the first 12 hours (standard relief time (SRT)) after the disaster are the location of temporary depots and the design of distribution paths. The motivation for this research was the delay in the reaction time of the early relief efforts generating the late arrival of aid to some areas after the Mexico City 7.1 magnitude earthquake in 2017. Hence, a preparation approach for planning the immediate response to earthquake disasters is proposed, intended for local governments, considering their capabilities for planning and for responding during the SRT, in order to reduce the start-up time of immediate response operations in urban areas. The first steps are the generation and analysis of disaster scenarios, which allow estimatethe relief demand before and in the early hours after an earthquake. The scenarios can be based on historical data and/or the seismic hazard analysis of an Atlas of Natural Hazards and Risk as a way to address the limited or null available information.The following steps include the decision processes for: a) locating local depots (places to prepositioning stockpiles)and aid-giving facilities at closer places as possible to risk areas; and b) designing the vehicle paths for aid distribution (from local depots to the aid-giving facilities), which can be used at the beginning of the response actions. This approach allows speeding up the delivery of aid in the early moments of the emergency, which could reduce the suffering of the victims allowing additional time to integrate a broader and more streamlined response (according to new information)from national and international organizations into these efforts. The proposed approachis applied to two case studies in Mexico City. These areas were affectedby the 2017’s earthquake, having limited aid response. The approach generates disaster scenarios in an easy way and plans a faster early response with a short quantity of stockpiles which can be managed in the early hours of the emergency by local governments. Considering long-term storage, the estimated quantities of stockpiles require a limited budget to maintain and a small storage space. These stockpiles are useful also to address a different kind of emergencies in the area.Keywords: disaster logistics, early response, generation of disaster scenarios, preparation phase
Procedia PDF Downloads 1108940 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration
Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas
Abstract:
Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.Keywords: dough, experimental, numerical, rupture
Procedia PDF Downloads 1228939 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy
Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla
Abstract:
Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.Keywords: multi-effect distillation, performance ratio, robustness, solar energy
Procedia PDF Downloads 1898938 Numerical Simulation for a Shallow Braced Excavation of Campus Building
Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu
Abstract:
In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.Keywords: excavation, numerical simulation, RIDO, retaining structure
Procedia PDF Downloads 2628937 For Post-traumatic Stress Disorder Counselors in China, the United States, and around the Globe, Cultural Beliefs Offer Challenges and Opportunities
Authors: Anne Giles
Abstract:
Trauma is generally defined as an experience, or multiple experiences, overwhelming a person's ability to cope. Over time, many people recover from the neurobiological, physical, and emotional effects of trauma on their own. For some people, however, troubling symptoms develop over time that can result in distress and disability. This cluster of symptoms is classified as Post-traumatic Stress Disorder (PTSD). People who meet the criteria for PTSD and other trauma-related disorder diagnoses often hold a set of understandable but unfounded beliefs about traumatic events that cause undue suffering. Becoming aware of unhelpful beliefs—termed "cognitive distortions"—and challenging them is the realm of Cognitive Behavior Therapy (CBT). A form of CBT found by researchers to be especially effective for PTSD is Cognitive Processing Therapy (CPT). Through the compassionate use of CPT, people identify, examine, challenge, and relinquish unhelpful beliefs, thereby reducing symptoms and suffering. Widely-held cultural beliefs can interfere with the progress of recovery from trauma-related disorders. Although highly revered, largely unquestioned, and often stabilizing, cultural beliefs can be founded in simplistic, dichotomous thinking, i.e., things are all right, or all wrong, all good, or all bad. The reality, however, is nuanced and complex. After studying examples of cultural beliefs from China and the United States and how these might interfere with trauma recovery, trauma counselors can help clients derive criteria for preserving helpful beliefs, discover, examine, and jettison unhelpful beliefs, reduce trauma symptoms, and live their lives more freely and fully.Keywords: cognitive processing therapy (CPT), cultural beliefs, post-traumatic stress disorder (PTSD), trauma recovery
Procedia PDF Downloads 2508936 Optimized Approach for Secure Data Sharing in Distributed Database
Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal
Abstract:
In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.Keywords: ER-schema, electronic record, P2P framework, API, query formulation
Procedia PDF Downloads 3338935 Plausible Influence of Hydroxycitric Acid and Garcinol in Garcinia indica Fruit Extract in High Fat Diet Induced Type 2 Diabetes Mellitus
Authors: Hannah Rachel Vasanthi, Paomipem Phazang, Veereshkumar, Sali, Ramesh Parjapath, Sangeetha Marimuthu Kannan
Abstract:
Garcinia indica (G. indica) fruit rind extract commonly used in South Indian culinary and Indian System of medicines is reported to exhibit various biological activities. The present study envisages the influence of the phytoconstituents in G. indica extract (Vrikshamla capsules- a herbal supplement) on diabetic condition. The condition of type 2 diabetes was triggered in experimental animals by feeding high fat diet for 8 weeks followed by a sub-diabetogenic dose of 35mg/kg bw of streptozotocin intraperitoneally. Oral supplementation of the extract at two doses (100 and 200 mg/kg body weight) for 14 days reduced hyperglycemia, hypercholesterolemia and dyslipidemia (p< 0.001). Pathophysiological changes of obesity and diabetes associated complications majorly mediated by oxidative stress were analyzed by measuring the markers of oxidative stress such as lipid peroxidation, enzymatic (SOD, Catalase, GPx) and non-enzymatic markers (GSH). Conspicuous changes markers were noticed in diabetic condition which was reverted by the G. indica extract. Screening the extract by AccuTOF-DART (MS) revealed the presence of hydroxycitric acid and garcinol in abundant quantity which probably has influenced the biological activity. This was also corroborated through docking studies of hydroxycitric acid and garcinol both individually and synergistically with the antioxidant proteins. Altogether, hydroxycitric acid and garcinol present in G. indica fruit extract alleviates the pathophysiological conditions such as hyperglycemia, dyslipidemia, insulin resistance and oxidative stress mediated by diabesity.Keywords: antioxidants , diabesity, hydroxycitric acid, garcinol, Garcinia indica, sreptozotocin
Procedia PDF Downloads 2648934 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2928933 Trauma Informed Healthy Lifestyle Program for Young Adults
Authors: Alicia Carranza, Hildemar Dos Santos, W. Lawrence Beeson, R. Patti Herring, Kimberly R. Freeman, Adam Arechiga
Abstract:
Early exposure to trauma can impact health-related behaviors later in life, which poses a considerable challenge for young adults transitioning into independence when they are lacking the necessary skills and support to live a healthy life. The study will be a non-experimental, mixed methods pre- and post-test (where subjects will serve as their own controls) to determine the impact of an eight-week trauma-informed healthy lifestyle program on self-efficacy for adopting health-promoting behaviors and health outcomes among young adults. Forty-two adults, ages 18-24 who are living in Orange County, CA will be recruited to participate in the eight-week trauma-informed healthy living program. Baseline and post-intervention assessments will be conducted to assess changes in self-efficacy for nutrition and physical exercise, sleep quality and quantity, body mass index (kg/m2), and coping skills used by comparing pre- to post-intervention. Some of the planned activities include cooking demonstrations, mindful eating activities and media literacy using Instagram. Frequencies analyses, paired t-test, and multiple regression will be used to determine if there was a change in coping skills. The results of this study can serve to assess the potential for mitigating the effects of Adverse Childhood Experiences (ACEs), or other toxic stress, experienced during adolescence across the lifespan. Young adults who learn how to cope with stress in a healthy way and engage in a healthy lifestyle can be better prepared to role model that behavior to their children.Keywords: nutrition, healthy lifestyle, trauma-informed, stress management
Procedia PDF Downloads 1068932 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 1678931 Antioxidant Status in Synovial Fluid from Osteoarthritis Patients: A Pilot Study in Indian Demography
Authors: S. Koppikar, P. Kulkarni, D. Ingale , N. Wagh, S. Deshpande, A. Mahajan, A. Harsulkar
Abstract:
Crucial role of reactive oxygen species (ROS) in the progression Osteoarthritis (OA) pathogenesis has been endorsed several times though its exact mechanism remains unclear. Oxidative stress is known to instigate classical stress factors such as cytokines, chemokines and ROS, which hampers cartilage remodelling process and ultimately results in worsening the disease. Synovial fluid (SF) is a biological communicator between cartilage and synovium that accumulates redox and biochemical signalling mediators. The present work attempts to measure several oxidative stress markers in the synovial fluid obtained from knee OA patients with varying degree of disease severity. Thirty OA and five Meniscal-tear (MT) patients were graded using Kellgren-Lawrence scale and assessed for Nitric oxide (NO), Nitrate-Nitrite (NN), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Potential (FRAP), Catalase (CAT), Superoxide dismutase (SOD) and Malondialdehyde (MDA) levels for comparison. Out of various oxidative markers studied, NO and SOD showed significant difference between moderate and severe OA (p= 0.007 and p= 0.08, respectively), whereas CAT demonstrated significant difference between MT and mild group (p= 0.07). Interestingly, NN revealed statistically positive correlation with OA severity (p= 0.001 and p= 0.003). MDA, a lipid peroxidation by-product was estimated maximum in early OA when compared to MT (p= 0.06). However, FRAP did not show any correlation with OA severity or MT control. NO is an essential bio-regulatory molecule essential for several physiological processes, and inflammatory conditions. However, due to its short life, exact estimation of NO becomes difficult. NO and its measurable stable products are still it is considered as one of the important biomarker of oxidative damage. Levels of NO and nitrite-nitrate in SF of patients with OA indicated its involvement in the disease progression. When SF groups were compared, a significant correlation among moderate, mild and MT groups was established. To summarize, present data illustrated higher levels of NO, SOD, CAT, DPPH and MDA in early OA in comparison with MT, as a control group. NN had emerged as a prognostic bio marker in knee OA patients, which may act as futuristic targets in OA treatment.Keywords: antioxidant, knee osteoarthritis, oxidative stress, synovial fluid
Procedia PDF Downloads 4778930 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth
Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie
Abstract:
Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic
Procedia PDF Downloads 1838929 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder
Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea
Abstract:
Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 1238928 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions
Authors: Nisha Dhariwal, Anupama Sharma
Abstract:
The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization
Procedia PDF Downloads 3018927 Numerical Simulation of Fracturing Behaviour of Pre-Cracked Crystalline Rock Using a Cohesive Grain-Based Distinct Element Model
Authors: Mahdi Saadat, Abbas Taheri
Abstract:
Understanding the cracking response of crystalline rocks at mineralogical scale is of great importance during the design procedure of mining structures. A grain-based distinct element model (GBM) is employed to numerically study the cracking response of Barre granite at micro- and macro-scales. The GBM framework is augmented with a proposed distinct element-based cohesive model to reproduce the micro-cracking response of the inter- and intra-grain contacts. The cohesive GBM framework is implemented in PFC2D distinct element codes. The microstructural properties of Barre granite are imported in PFC2D to generate synthetic specimens. The microproperties of the model is calibrated against the laboratory uniaxial compressive and Brazilian split tensile tests. The calibrated model is then used to simulate the fracturing behaviour of pre-cracked Barre granite with different flaw configurations. The numerical results of the proposed model demonstrate a good agreement with the experimental counterparts. The GBM framework proposed thus appears promising for further investigation of the influence of grain microstructure and mineralogical properties on the cracking behaviour of crystalline rocks.Keywords: discrete element modelling, cohesive grain-based model, crystalline rock, fracturing behavior
Procedia PDF Downloads 1298926 Consequences of Employees' Perception of Political Behavior in Kuwaiti Business Organizations
Authors: Ali Muhammad
Abstract:
The purpose of this study is to examine the effect of employees’ perception of political behavior on their behavior and attitudes. The model tested in this study suggests that employees’ perception of political behavior in their organizations leads to lower levels of job satisfaction, and organizational commitment, and higher levels of work-related stress, and intentions to leave the organization. A sample of 182 employees working in six Kuwaiti business organizations were surveyed using a questionnaire, and data was analyzed using correlation analysis, regression analysis, and non-parametric tests. Results reveal that employees’ perception of political behavior is negatively associated with job satisfaction and organizational commitment, and positively associated with work-related stress and employees’ intentions to leave the organization. The results of the current study are discussed and are compared to the results of previous studies in this area. Finally, the directions for future research are suggested.Keywords: perceptions of political behavior, organizational commitment, job satisfaction, intention to leave
Procedia PDF Downloads 3538925 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures
Authors: Moumita Sit, Chaitali Ray
Abstract:
The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress
Procedia PDF Downloads 1508924 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests
Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota
Abstract:
Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.Keywords: liquefaction, shear modulus degradation, shaking table, earthquake
Procedia PDF Downloads 3878923 Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles
Authors: Uc-Cayetano E. G., Ake-Uh O. E., Villanueva-Mena I. E., Ordonez L. C.
Abstract:
Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs.Keywords: WCNTs, enzymes, oxidation, decoration
Procedia PDF Downloads 1298922 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System
Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati
Abstract:
In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.Keywords: superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols Tuning
Procedia PDF Downloads 3318921 Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker
Authors: M. Madheswaran, A. R. Prashant, S. Ramakrishna, V. Ramesh Naidu, P. Govindan, P. Aravindakshan
Abstract:
Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented.Keywords: maxi-max spectrum, SRS (shock response spectrum), SDOf (single degree of freedom), wavelet synthesis
Procedia PDF Downloads 3608920 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment
Authors: Sittipong Jarernprasert, Enrique Bazan-Zurita, Paul C. Rizzo
Abstract:
Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.Keywords: seismic, directionality, in-structure response spectra, probabilistic risk assessment
Procedia PDF Downloads 4108919 NK Cells Expansion Model from PBMC Led to a Decrease of CD4+ and an Increase of CD8+ and CD25+CD127- T-Reg Lymphocytes in Patients with Ovarian Neoplasia
Authors: Rodrigo Fernandes da Silva, Daniela Maira Cardozo, Paulo Cesar Martins Alves, Sophie Françoise Derchain, Fernando Guimarães
Abstract:
T-reg lymphocytes are important for the control of peripheral tolerance. They control the adaptive immune system and prevent autoimmunity through its suppressive action on CD4+ and CD8+ lymphocytes. The suppressive action also includes B lymphocytes, dendritic cells, monocytes/macrophages and recently, studies have shown that T-reg are also able to inhibit NK cells, therefore they exert their control of the immune response from innate to adaptive response. Most tumors express self-ligands, therefore it is believed that T-reg cells induce tolerance of the immune system, hindering the development of successful immunotherapies. T-reg cells have been linked to the suppression mechanisms of the immune response against tumors, including ovarian cancer. The goal of this study was to disclose the sub-population of the expanded CD3+ lymphocytes reported by previous studies, using the long-term culture model designed by Carlens et al 2001, to generate effector cell suspensions enriched with cytotoxic CD3-CD56+ NK cells, from PBMC of ovarian neoplasia patients. Methods and Results: Blood was collected from 12 patients with ovarian neoplasia after signed consent: 7 benign (Bng) and 5 malignant (Mlg). Mononuclear cells were separated by Ficoll-Paque gradient. Long-term culture was conducted by a 21 day culturing process with SCGM CellGro medium supplemented with anti-CD3 (10ng/ml, first 5 days), IL-2 (1000UI/ml) and FBS (10%). After 21 days of expansion, there was an increase in the population of CD3+ lymphocytes in the benign and malignant group. Within CD3+ population, there was a significant decrease in the population of CD4+ lymphocytes in the benign (median Bgn D-0=73.68%, D-21=21.05%) (p<0.05) and malignant (median Mlg D-0=64.00%, D-21=11.97%) (p < 0.01) group. Inversely, after 21 days of expansion, there was an increase in the population of CD8+ lymphocytes within the CD3+ population in the benign (median Bgn D-0=16.80%, D-21=38.56%) and malignant (median Mlg D-0=27.12%, D-21=72.58%) group. However, this increase was only significant on the malignant group (p<0.01). Within the CD3+CD4+ population, there was a significant increase (p < 0.05) in the population of T-reg lymphocytes in the benign (median Bgn D-0=9.84%, D-21=39.47%) and malignant (median Mlg D-0=3.56%, D-21=16.18%) group. Statistical analysis inter groups was performed by Kruskal-Wallis test and intra groups by Mann Whitney test. Conclusion: The CD4+ and CD8+ sub-population of CD3+ lymphocytes shifts with the culturing process. This might be due to the process of the immune system to produce a cytotoxic response. At the same time, T-reg lymphocytes increased within the CD4+ population, suggesting a modulation of the immune response towards cells of the immune system. The expansion of the T-reg population can hinder an immune response against cancer. Therefore, an immunotherapy using this expansion procedure should aim to halt the expansion of T-reg or its immunosuppresion capability.Keywords: regulatory T cells, CD8+ T cells, CD4+ T cells, NK cell expansion
Procedia PDF Downloads 4518918 The Analysis of TRACE/PARCS in the Simulation of Ultimate Response Guideline for Lungmen ABWR
Authors: J. R. Wang, W. Y. Li, H. T. Lin, B. H. Lee, C. Shih, S. W. Chen
Abstract:
In this research, the TRACE/PARCS model of Lungmen ABWR has been developed for verification of ultimate response guideline (URG) efficiency. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. The simulation initial condition is 100% rated power/100% rated core flow. This research focuses on the estimation of the time when the fuel might be damaged with no water injection by using TRACE/PARCS first. Then, the effect of the reactor core isolation system (RCIC), control depressurization and ac-independent water addition system (ACIWA), which can provide the injection with 950 gpm are also estimated for the station blackout (SBO) transient.Keywords: ABWR, TRACE, safety analysis, PARCS
Procedia PDF Downloads 4558917 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 2948916 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones
Authors: Lucas Caldas, Pablo Paulse, Karla Hora
Abstract:
Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance
Procedia PDF Downloads 174