Search results for: high performance
26093 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 6826092 Seismic Performance of Various Grades of Steel Columns Through Finite Element Analysis
Authors: Asal Pournaghshband, Roham Maher
Abstract:
This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation, and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions.Keywords: Energy dissipation, finite element analysis, H-shaped columns, seismic performance, stainless steel grades
Procedia PDF Downloads 2226091 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction
Authors: Xiaoling Ren, Guidong Yang
Abstract:
As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility
Procedia PDF Downloads 15726090 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton
Authors: Bing Chen, Xiang Ni, Eric Li
Abstract:
With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton
Procedia PDF Downloads 10626089 New Standardized Framework for Developing Mobile Applications (Based On Real Case Studies and CMMI)
Authors: Ammar Khader Almasri
Abstract:
The software processes play a vital role for delivering a high quality software system that meets the user’s needs. There are many software development models which are used by most system developers, which can be categorized into two categories (traditional and new methodologies). Mobile applications like other desktop applications need appropriate and well-working software development process. Nevertheless, mobile applications have different features which limit their performance and efficiency like application size, mobile hardware features. Moreover, this research aims to help developers in using a standardized model for developing mobile applications.Keywords: software development process, agile methods , moblile application development, traditional methods
Procedia PDF Downloads 38526088 Indigenous Firms Out-leverage other New Zealand firms through Cultural Practices: A Mixed Methods Study
Authors: Jarrod Haar, David Brougham, Azka Ghafoor
Abstract:
Māori are the indigenous people of Aotearoa (New Zealand) and have a unique perspective called Te Ao Māori (the Māori worldview) and important cultural values around utu (reciprocation), collectivism, long-term orientation, and whanaungatanga (networking, relationships). The present research conducts two studies to better understand how Māori businesses might have similarities and differences to New Zealand businesses. In study 1, we conducted 50 interviews with 25 Māori business owners and 25 New Zealand (non-Māori) owners. For the indigenous population, we used a kaupapa Māori research approach using Māori protocols. This ensured the research is culturally safe. Interviews were conducted around semi-structured questions tapping into the existing business challenges, the role of innovation, and business values and approaches. Transcripts were analyzed using interpretative phenomenological analytic techniques. We identified several themes shared across all business owners: (1) the critical challenge around staff attraction and retention; (2) cost pressures including inflation; (3) and a focus on human resource (HR) practices to address issues including retention. Amongst the Māori businesses, the analysis also identified (4) a unique cultural approach to business relationships. Specifically, amongst the indigenous businesses we find a strong Te Ao Māori perspective amongst Māori business towards innovation. Analysis within this group only identified, within the following sub-themes: (a) whanaungatanga, around the development of strong relationships as a way to aid recruitment and retention, and business fluctuations; (b) mātauranga (knowledge) whereby Māori businesses seek to access advanced knowledge via universities; (c) taking a long-term orientation to business relationships – including with universities. The findings suggest people practices might be a way that firms address workforce retention issues, and we also acknowledge that Māori businesses might also leverage cultural practices to achieve better gains. Thus, in study 2, we survey 606 New Zealand private sector firms including 85 who self-identify as Māori Firms. We test the benefits of high-performance work-systems (HPWS), which represent bundle of human-resource practices designed to bolster workforce productivity through enhancing knowledge, skills, abilities, and commitment of the workforce. We test these on workforce retention and include Māori firm status and cultural capital (reflecting workforce knowledge around Māori cultural values) as moderators. Overall, we find all firms achieve superior workforce retention when they have high levels of HPWS, but Māori firms with high cultural capital are better able to leverage these HR practices to achieve superior workforce retention. In summary, the present study highlights how indigenous businesses in New Zealand might achieve superior performance by leveraging their unique cultural values. The study provides unique insights into established literatures around retention and HR practices and highlights the lessons around indigenous cultural values that appear to aid businesses.Keywords: Māori business, cultural values, employee retention, human resource practices
Procedia PDF Downloads 6626087 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria
Authors: Tomola Obamuyi
Abstract:
The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression
Procedia PDF Downloads 11826086 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10526085 Desing of Woven Fabric with Increased Sound Transmission Loss Property
Authors: U. Gunal, H. I. Turgut, H. Gurler, S. Kaya
Abstract:
There are many ever-increasing and newly emerging problems with rapid population growth in the world. With the increase in people's quality of life in our daily life, acoustic comfort has become an important feature in the textile industry. In order to meet all these expectations in people's comfort areas and survive in challenging competitive conditions in the market without compromising the customer product quality expectations of textile manufacturers, it has become a necessity to bring functionality to the products. It is inevitable to research and develop materials and processes that will bring these functionalities to textile products. The noise we encounter almost everywhere in our daily life, in the street, at home and work, is one of the problems which textile industry is working on. It brings with it many health problems, both mentally and physically. Therefore, noise control studies become more of an issue. Besides, materials used in noise control are not sufficient to reduce the effect of the noise level. The fabrics used in acoustic studies in the textile industry do not show sufficient performance according to their weight and high cost. Thus, acoustic textile products can not be used in daily life. In the thesis study, the attributions used in the noise control and building acoustics studies in the literature were analyzed, and the product with the highest damping value that a textile material will have was designed, manufactured, and tested. Optimum values were obtained by using different material samples that may affect the performance of the acoustic material. Acoustic measurement methods should be applied to verify the acoustic performances shown by the parameters and the designed three-dimensional structure at different values. In the measurements made in the study, the device designed for determining the acoustic performance of the material for both the impedance tube according to the relevant standards and the different noise types in the study was used. In addition, sound records of noise types encountered in daily life are taken and applied to the acoustic absorbent fabric with the aid of the device, and the feasibility of the results and the commercial ability of the product are examined. MATLAB numerical computing programming language and libraries were used in the frequency and sound power analyses made in the study.Keywords: acoustic, egg crate, fabric, textile
Procedia PDF Downloads 10526084 Characterization of Volatile Compounds in Meat Lamb Fed in Different Algeria Pasture
Authors: Nabila Berrighi, Kaddour Bouderoua, Maria Khossif, Gema Nieto, Gaspar Ros
Abstract:
Ruminant meat is an important source of nutrients and is also of high sensory value. However, the importance and nature of these characteristics depend on ruminant nutrition. The objective of this study is to assess the effect of two Algerian feeding systems applied in the steppic rearing area of Djelfa and in the highlands one of Tiaret on the growth performance of lambs and on their meat quality, especially on their aroma compounds of meat. At the beginning of the experiment, lambs had an average body weight of 34.04 kg, and 35.40 kg for the group reared at Highland (0% concentrate) and Steppe (30% concentrate), respectively. The incorporation of the concentrated feed in Steppe had a significant effect on slaughter weight compared to lambs fed only on pasture (Highland) (49.72 Kg vs. 42.06 Kg, P<0.05). Beyond the first month, animals from the Steppe one showed better weight gains compared to those from Highland (14.32Kg vs. 8.02 Kg, respectively, P<0,05). After slaughter, samples from the Longissimus thoracis were removed and analyzed. The results point to significant differences in the amounts of many of the predominant volatile compounds between both groups (p<0.05), such as Hexanal, 2-methyl-3-furanthiol and nonanal (8.92 μg/kg vs. 4.57 μg/kg), (8.88 μg/kg vs. 7.45 μg/kg) and (2.09 μ/kg vs. 1.02 μg/kg) associated with smells of green, boiling meat and orange fruit, respectively. These compounds, measured by olfactometry, derived from the oxidation of lipids and appear to be responsible for the characteristic flavor of lamb meat in the steppe compared to that generated by meat from animals from the Highland pastures. The Algerian Steppe ecosystem is very interesting for outdoor sheep breeding, which allows to obtain attractive sensory quality and in the production of typical lamb meat that can be considered as a label.Keywords: falvour, growth performance, lamb meat, steppe pasture
Procedia PDF Downloads 10026083 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 7626082 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT
Authors: R. R. Ramsheeja, R. Sreeraj
Abstract:
For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification
Procedia PDF Downloads 50826081 Astronomical Object Classification
Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan
Abstract:
We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis
Procedia PDF Downloads 7526080 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 18026079 Effect of Marketing Strategy on the Performance of Small and Medium Enterprises in Nigeria
Authors: Kadiri Kayode Ibrahim, Kadiri Omowunmi
Abstract:
The research study was concerned with an evaluation of the effect of marketing strategy on the performance of SMEs in Abuja. This was achieved, specifically, through the examination of the effect of disaggregated components of Marketing Strategy (Product, Price, Promotion, Placement and Process) on Sales Volume (as a proxy for performance). The study design was causal in nature, with the use of quantitative methods involving a cross-sectional survey carried out with the administration of a structured questionnaire. A multistage sample of 398 respondents was utilized to provide the primary data used in the study. Subsequently, path analysis was employed in processing the obtained data and testing formulated hypotheses. Findings from the study indicated that all modeled components of marketing strategy were positive and statistically significant determinants of performance among businesses in the zone. It was, therefore, recommended that SMEs invest in continuous product innovation and development that are in line with the needs and preferences of the target market, as well as adopt a dynamic pricing strategy that considers both cost factors and market conditions. It is, therefore, crucial that businesses in the zone adopt marker communication measures that would stimulate brand awareness and increase engagement, including the use of social media platforms and content marketing. Additionally, owner-managers should ensure that their products are readily available to their target customers through an emphasis on availability and accessibility measures. Furthermore, a commitment to consistent optimization of internal operations is crucial for improved productivity, reduced costs, and enhanced customer satisfaction, which in turn will positively impact their overall performance.Keywords: product, price, promotion, placement
Procedia PDF Downloads 3926078 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 7726077 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate
Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez
Abstract:
Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements
Procedia PDF Downloads 12026076 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures in the Iranian Roads Network
Authors: M. Mokhber, J. Hedayati
Abstract:
From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, 9 roads with the overall length of about 1000 Km of high-risk corridors are considered as preferences of safety measures.Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures
Procedia PDF Downloads 17526075 Impact of Emotional Intelligence on Job Satisfaction and Organizational Commitment: A Study on Young Doctors of Pakistan
Authors: Aisha Khalid, Talha Aftab, Fareeha Zafar
Abstract:
This paper investigates the impact of emotional intelligence on job satisfaction and organizational commitment at workplace in the doctors; age ranging from 25 to 32 years. Job satisfaction and organizational commitment have been considered as important issue in terms of high quality services and superior performance. This paper presents a field survey conducted in 9 different public sector hospitals which operate in Punjab, Pakistan. 250 questionnaires were distributed out of which 180 returned back were showing 72% response rate, confirming the significant positive relationship between emotional intelligence and job satisfaction and emotional intelligence and organizational commitment.Keywords: emotional intelligence, job satisfaction, organizational commitment, young doctors
Procedia PDF Downloads 57126074 Development of an Advanced Power Ultrasonic-Assisted Drilling System
Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff
Abstract:
The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling
Procedia PDF Downloads 27626073 Effects of Overtraining in Female Collegiate Athletes
Authors: Morgan Dombroski, Alexis Hartman
Abstract:
Purpose: The present study aimed to explore factors related to overtraining within a female collegiate sample by analyzing the aftereffects of overtraining on athletes' physical and emotional well-being. Methods: 51 female collegiate athletes participated in a de-identified survey to assess factors related to overtraining. All survey questions were derived from the Recovery-Stress Questionnaire. Descriptive and bivariate correlations were conducted to test for significant factors related to the athletes' physical and emotional well-being relating to sports engagement. Results: Descriptive statistics indicated: 80.4% of athletes reported feeling tired from sport-related work, 72.5% reported parts of their body were aching, 47.1% reported feeling emotionally drained, and 37.3% reported feeling burnt out by sport. These findings were consistent with bivariate correlations, which yielded statistically significant findings between physical fatigue and emotional distress. Discussion: In a general sense, athletes increase their training to maximize their performance. The current study aimed to analyze how this training process can result in overtraining of female collegiate athletes, which in turn may negatively impact their physical and emotional functioning. Overtraining syndrome can occur as a maladaptive response to excessive exercise and inappropriate rest caused by systemic inflammation, which negatively affects the central nervous system. The physical manifestations of overtraining can then lead to depressed mood, fatigue, and neurohormonal changes in athletes. To remain competitive and high performing in sports, athletes partaking in excessive training can result in overtraining syndrome, athlete burnout, and compulsive exercise. Additionally, overtrained athletes were defined by displaying high levels of perfectionism, maladaptive coping, and training distress. The current study supported these findings, which yielded a strong correlation between physical and emotional functioning in the context of overtraining in sports. All in all, the environment revolving around sports and the intensity of training can be extremely stressful for athletes. There is a need to monitor athletes’ subjective responses to training, which will allow for early identification of at-risk athletes giving clinicians various opportunities to reduce the negative consequences of overtraining. By better understanding symptoms of emotional and physical fatigue, collegiate sports can become more aware of overtraining symptoms to prevent further detriment to female athletes' overall well-being.Keywords: burnout, emotionally drained, overtraining, performance, well-being
Procedia PDF Downloads 5926072 Communication Aesthetics of Techno-Scenery and Lighting in Bolanle Austen-Peters Queen Moremi the Musical
Authors: Badeji Adebayo John
Abstract:
Technology has immense contribution in every aspect of human endeavor; it has not only made work easier but also provided exhilarating impression in the mind of the people. Theatre is not exempted from the multifaceted influence of technology on phenomenon. Therefore, theatre performances have experienced the excellence of technology in the contemporary era such that audiences have unforgettable experiences after seeing theatre performances. Some of these technological advancements that have amplified the aesthetics of performances in the theatre are techno-scenery (3D mapping) and lighting. In view of this, the objective of this study is to explore how techno-scenery and lighting technologies were used to communicate messages in the performance of Queen Moremi the Musical. In so doing, Participant-Observation Method and Content Analysis are adopted. Berlo’s model of communication is also employed to explain the communicative aesthetics of these theatre technologies in the performance. Techno-scenery and lighting are communication media modifier that facilitates audiences’ comprehension of the messages in the performance of Queen Moremi the Musical. They also create clear motion pictures of the setting which the performers cannot communicate in their acting, dances and singing, to ease the audiences’ decoding of messages that the performers are sending to the audience. Therefore, consistent incorporation of these technologies to theatre performances will facilitate easy flow of communication in-between the performers who are the sender, the message which is the performance and the audience who are the receiver.Keywords: communication, aesthetics, techno-scenery, lighting, musical
Procedia PDF Downloads 8326071 A Review of the Factors That Influence on Nutrient Removal in Upflow Filters
Authors: Ali Alzeyadi, Edward Loffill, Rafid Alkhaddar Ali Alattabi
Abstract:
Phosphate, ammonium, and nitrates are forms of nutrients; they are released from different sources. High nutrient levels contribute to the eutrophication of water bodies by accelerating the extraordinary growth of algae. Recently, many filtration and treatment systems were developed and used for different removal processes. Due to enhanced operational aspects for the up-flow, continuous, granular Media filter researchers became more interested in further developing this technology and its performance for nutrient removal from wastewater. Environmental factors significantly affect the filtration process performance, and understanding their impact will help to maintain the nutrient removal process. Phosphate removal by phosphate sorption materials PSMs and nitrogen removal biologically are the methods of nutrient removal that have been discussed in this paper. Hence, the focus on the factors that influence these processes is the scope of this work. The finding showed the presence of factors affecting both removal processes; the size, shape, and roughness of the filter media particles play a crucial role in supporting biofilm formation. On the other hand, all of which are effected on the reactivity of surface between the media and phosphate. Many studies alluded to factors that have significant influence on the biological removal for nitrogen such as dissolved oxygen, temperature, and pH; this is due to the sensitivity of biological processes while the phosphate removal by PSMs showed less affected by these factors. This review work provides help to the researchers in create a comprehensive approach in regards study the nutrient removal in up flow filtration systems.Keywords: nitrogen biological treatment, nutrients, psms, upflow filter, wastewater treatment
Procedia PDF Downloads 32126070 Isolation and Identification of Novel Escherichia Marmotae Spp.: Their Enzymatic Biodegradation of Zearalenone and Deep-oxidation of Deoxynivalenol
Authors: Bilal Murtaza, Xiaoyu Li, Liming Dong, Muhammad Kashif Saleemi, Gen Li, Bowen Jin, Lili Wang, Yongping Xu
Abstract:
Fusarium spp. produce numerous mycotoxins, such as zearalenone (ZEN), deoxynivalenol (DON), and its acetylated compounds, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) (15-ADON). In a co-culture system, the soil-derived Escherichia marmotae strain degrades ZEN and DON into 3-keto-DON and DOM-1 via enzymatic deep-oxidation. When pure mycotoxins were subjected to Escherichia marmotae in culture flasks, degradation, and detoxification were also attained. DON and ZEN concentrations, ambient pH, incubation temperatures, bacterium concentrations, and the impact of acid treatment on degradation were all evaluated. The results of the ELISA and high-performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) tests demonstrated that the concentration of mycotoxins exposed to Escherichia marmotae was significantly lower than the control. ZEN levels were reduced by 43.9%, while zearalenone sulfate ([M/z 397.1052 C18H21O8S1) was discovered as a derivative of ZEN converted by microbes to a less toxic molecule. Furthermore, Escherichia marmotae appeared to metabolize DON 35.10% into less toxic derivatives (DOM-1 at m/z 281 of [DON - O]+ and 3-keto-DON at m/z 295 of [DON - 2H]+). These results show that Escherichia marmotae can reduce Fusarium mycotoxins production, degrade pure mycotoxins, and convert them to less harmful compounds, opening up new possibilities for study and innovation in mycotoxin detoxification.Keywords: mycotoxins, zearalenone, deoxynivalenol, bacterial degradation
Procedia PDF Downloads 9626069 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 13126068 Regional Low Gravity Anomalies Influencing High Concentrations of Heavy Minerals on Placer Deposits
Authors: T. B. Karu Jayasundara
Abstract:
Regions of low gravity and gravity anomalies both influence heavy mineral concentrations on placer deposits. Economically imported heavy minerals are likely to have higher levels of deposition in low gravity regions of placer deposits. This can be found in coastal regions of Southern Asia, particularly in Sri Lanka and Peninsula India and areas located in the lowest gravity region of the world. The area about 70 kilometers of the east coast of Sri Lanka is covered by a high percentage of ilmenite deposits, and the southwest coast of the island consists of Monazite placer deposit. These deposits are one of the largest placer deposits in the world. In India, the heavy mineral industry has a good market. On the other hand, based on the coastal placer deposits recorded, the high gravity region located around Papua New Guinea, has no such heavy mineral deposits. In low gravity regions, with the help of other depositional environmental factors, the grains have more time and space to float in the sea, this helps bring high concentrations of heavy mineral deposits to the coast. The effect of low and high gravity can be demonstrated by using heavy mineral separation devices. The Wilfley heavy mineral separating table is one of these; it is extensively used in industries and in laboratories for heavy mineral separation. The horizontally oscillating Wilfley table helps to separate heavy and light mineral grains in to deferent fractions, with the use of water. In this experiment, the low and high angle of the Wilfley table are representing low and high gravity respectively. A sample mixture of grain size <0.85 mm of heavy and light mineral grains has been used for this experiment. The high and low angle of the table was 60 and 20 respectively for this experiment. The separated fractions from the table are again separated into heavy and light minerals, with the use of heavy liquid, which consists of a specific gravity of 2.85. The fractions of separated heavy and light minerals have been used for drawing the two-dimensional graphs. The graphs show that the low gravity stage has a high percentage of heavy minerals collected in the upper area of the table than in the high gravity stage. The results of the experiment can be used for the comparison of regional low gravity and high gravity levels of heavy minerals. If there are any heavy mineral deposits in the high gravity regions, these deposits will take place far away from the coast, within the continental shelf.Keywords: anomaly, gravity, influence, mineral
Procedia PDF Downloads 19626067 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact
Authors: Edward Nartey
Abstract:
Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations
Procedia PDF Downloads 6226066 Analysis and Comparison of Prototypes of an Ergometric Step in a Multidisciplinary Design Process
Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, L. Di Thommazo, D. Braatz
Abstract:
Prototypes can be understood as representations of a product concept. Furthermore, prototyping consists in an important stage in product development and results in better team communication, decision making, testing and problem solving through feedback. Although there are several methods of prototyping suggested by recent studies for designers to choose from, some methods present different advantages, such as cost and time reduction, performance and fidelity, which should be taken in account during a product development project. In this multidisciplinary study, involving areas of physiotherapy, engineering and computer science (hardware and software), we compared four developed prototypes of an ergometric step: a virtual prototype, a 3D printed prototype, a bricolage prototype and a prototype manufactured by a third-party company. These prototypes were evaluated in a comparative-qualitative approach for their contribution to the concept’s maturation of the product, the different prototyping methods used and the advantages and disadvantages of each one based on the product’s design specifications (performance, safety, materials, cost, maintenance, usability, ergonomics and portability). Our results indicated that despite prototypes show overall advantages, all of them have limitations, thus being crucial to have different methods of testing and interacting with the product. Additionally, virtual and 3D printed prototypes were essential at early stages of the project due to their low-cost and high-fidelity representation of the product, while the prototype manufactured by a third-party company and bricolage prototype introduced functional tests in real scenarios, allowing more detailed evaluations. This study also resulted in a patent for an ergometric step.Keywords: Product Design, Product Development, Prototypes, Step
Procedia PDF Downloads 11526065 Debt Relief for Emerging Economies: An Empirical Investigation
Authors: Hummad Ch. Umar
Abstract:
Most of the developing economies, including Pakistan, are confronted with high level of external debt which is adversely affecting their economic performance. The hypothesis of debt overhang is often used to assess the negative relationship between foreign debt and the economic growth of the indebted country. As first objective of the present study, this hypothesis is tested by using Pooled OLS (POLS), Generalized Method of Moment (GMM), Random Effect (RE), and Fixed effect (FE) techniques. As second objective, the study uses the concept of debt Laffer Curve to determine the eligibility condition of the indebted countries for the relief programs. According to this approach, countries lying on the right side of the Laffer Curve are stated to be trapped in the strong debt overhang making them unable to come out of the vicious circle of low growth and high foreign debt. The empirical analysis confirms that only two countries out of twenty two completely fulfill the conditions of being eligible for the debt relief. All other countries continue to face debt burden of different magnitudes. The study further confirms that the debt relief alone is not sufficient for overcoming the debt problem. Instead, sound economic policies and conducive investment decisions are required to lay the foundations of long-term growth and development. Debt relief should be the option for only those countries that meet a minimum measurable criterion of good governance, economic freedom, and consistency of policies.Keywords: external debt, debt burden, debt overhang, debt laffer curve, debt relief, investment decisions
Procedia PDF Downloads 32526064 Effect of Perceived Importance of a Task in the Prospective Memory Task
Authors: Kazushige Wada, Mayuko Ueda
Abstract:
In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.
Procedia PDF Downloads 446