Search results for: hierarchical text classification models
7292 Moderating Role of Fast Food Restaurants Employees Prior Job Experience on the Relationship between Customer Satisfaction and Loyalty
Authors: Mohammed Bala Banki
Abstract:
This paper examines the relationship between employee satisfaction, customer satisfaction and loyalty in fast food restaurants in Nigeria and ascertains if prior job experience of employees before their present job moderate the relationship between customer satisfaction and loyalty. Data for this study were collected from matched pairs of employees and customers of fast restaurants in four Nigerian cities. A Structural Equation Modelling (SEM) was used for the analysis to test the proposed relationships and hierarchical multiple regression was performed in SPSS 22 to test moderating effect. Findings suggest that there is a direct positive and significant relationship between employee satisfaction and customer satisfaction and customer satisfaction and loyalty while the path between employee satisfaction and customer loyalty is insignificant. Results also reveal that employee’s prior job experience significantly moderate the relationship between customer satisfaction and loyalty. Further analysis indicates that employees with more years of experience provide more fulfilling services to restaurants customers. This paper provides some theoretical and managerial implications for academia and practitioners.Keywords: employee’s satisfaction, customer’s satisfaction, loyalty, employee’s prior job experience, fast food industry
Procedia PDF Downloads 1797291 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 3957290 Building a Blockchain-based Internet of Things
Authors: Rob van den Dam
Abstract:
Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.Keywords: IoT, internet, wired, wireless
Procedia PDF Downloads 3427289 A Study of Predicting Judgments on Causes of Online Privacy Invasions: Based on U.S Judicial Cases
Authors: Minjung Park, Sangmi Chai, Myoung Jun Lee
Abstract:
Since there are growing concerns on online privacy, enterprises could involve various personal privacy infringements cases resulting legal causations. For companies that are involving online business, it is important for them to pay extra attentions to protect users’ privacy. If firms can aware consequences from possible online privacy invasion cases, they can more actively prevent future online privacy infringements. This study attempts to predict the probability of ruling types caused by various invasion cases under U.S Personal Privacy Act. More specifically, this research explores online privacy invasion cases which was sentenced guilty to identify types of criminal punishments such as penalty, imprisonment, probation as well as compensation in civil cases. Based on the 853 U.S judicial cases ranged from January, 2000 to May, 2016, which related on data privacy, this research examines the relationship between personal information infringements cases and adjudications. Upon analysis results of 41,724 words extracted from 853 regal cases, this study examined online users’ privacy invasion cases to predict the probability of conviction for a firm as an offender in both of criminal and civil law. This research specifically examines that a cause of privacy infringements and a judgment type, whether it leads a civil or criminal liability, from U.S court. This study applies network text analysis (NTA) for data analysis, which is regarded as a useful method to discover embedded social trends within texts. According to our research results, certain online privacy infringement cases caused by online spamming and adware have a high possibility that firms are liable in the case. Our research results provide meaningful insights to academia as well as industry. First, our study is providing a new insight by applying Big Data analytics to legal cases so that it can predict the cause of invasions and legal consequences. Since there are few researches applying big data analytics in the domain of law, specifically in online privacy, this study suggests new area that future studies can explore. Secondly, this study reflects social influences, such as a development of privacy invasion technologies and changes of users’ level of awareness of online privacy on judicial cases analysis by adopting NTA method. Our research results indicate that firms need to improve technical and managerial systems to protect users’ online privacy to avoid negative legal consequences.Keywords: network text analysis, online privacy invasions, personal information infringements, predicting judgements
Procedia PDF Downloads 2297288 A Method and System for Secure Authentication Using One Time QR Code
Authors: Divyans Mahansaria
Abstract:
User authentication is an important security measure for protecting confidential data and systems. However, the vulnerability while authenticating into a system has significantly increased. Thus, necessary mechanisms must be deployed during the process of authenticating a user to safeguard him/her from the vulnerable attacks. The proposed solution implements a novel authentication mechanism to counter various forms of security breach attacks including phishing, Trojan horse, replay, key logging, Asterisk logging, shoulder surfing, brute force search and others. QR code (Quick Response Code) is a type of matrix barcode or two-dimensional barcode that can be used for storing URLs, text, images and other information. In the proposed solution, during each new authentication request, a QR code is dynamically generated and presented to the user. A piece of generic information is mapped to plurality of elements and stored within the QR code. The mapping of generic information with plurality of elements, randomizes in each new login, and thus the QR code generated for each new authentication request is for one-time use only. In order to authenticate into the system, the user needs to decode the QR code using any QR code decoding software. The QR code decoding software needs to be installed on handheld mobile devices such as smartphones, personal digital assistant (PDA), etc. On decoding the QR code, the user will be presented a mapping between the generic piece of information and plurality of elements using which the user needs to derive cipher secret information corresponding to his/her actual password. Now, in place of the actual password, the user will use this cipher secret information to authenticate into the system. The authentication terminal will receive the cipher secret information and use a validation engine that will decipher the cipher secret information. If the entered secret information is correct, the user will be provided access to the system. Usability study has been carried out on the proposed solution, and the new authentication mechanism was found to be easy to learn and adapt. Mathematical analysis of the time taken to carry out brute force attack on the proposed solution has been carried out. The result of mathematical analysis showed that the solution is almost completely resistant to brute force attack. Today’s standard methods for authentication are subject to a wide variety of software, hardware, and human attacks. The proposed scheme can be very useful in controlling the various types of authentication related attacks especially in a networked computer environment where the use of username and password for authentication is common.Keywords: authentication, QR code, cipher / decipher text, one time password, secret information
Procedia PDF Downloads 2707287 Love and Loss: The Emergence of Shame in Romantic Information Communication Technology
Authors: C. Caudwell, R. Syed, C. Lacey
Abstract:
While the development and advancement of information communication technologies (ICTs) offers powerful opportunities for meaningful connections and relationships, shame is a significant barrier to social and cultural acceptance. In particular, artificial intelligence and socially oriented robots are increasingly becoming partners in romantic relationships with people, offering bonding, support, comfort, growth, and reciprocity. However, these relationships suffer hierarchical, anthropocentric shame that is a significant barrier to their success and longevity. This paper will present case studies of human and artificially intelligent agent relationships, in the context of internal and external shame, as cultivated, propagated, and communicated through ICT. Using an interdisciplinary methodology we aim to present a framework for technological shame, building on the experimental and emergent psychoanalytical theories of emotions. Our study finds principally that socialization is a powerful factor in the vectors of shame as experienced by humans. On a wider scale, we contribute understanding of social emotion and the phenomenon of shame proliferated through ICTs, which is at present under-explored, but vital, as society and culture is increasingly mediated through this medium.Keywords: shame, artificial intelligence, romance, society
Procedia PDF Downloads 1387286 A Theory of Vertical Partnerships Model as Responsive Failure in Alternative Arrangement for Infrastructural Development in the Third World Countries: A Comparative Public Administration Analysis
Authors: Cyril Ekuaze
Abstract:
This paper was instigated by a set of assumption drawn at the introduction to a research work on alternative institutional arrangements for sustaining rural infrastructure in developing countries. Of one of such assumption is the one held that, a problem facing developing countries is the sustaining of infrastructural investment long enough to allow the facility to at least repay the cost of the development as been due to insufficient maintenance. On the contrary, this work argues that, most international partnerships relation with developing nations in developing infrastructures is “vertical modeling” with the hierarchical authority and command flow from top to bottom. The work argued that where international donor partners/agencies set out infrastructural development agenda in the developing nations without cognizance of design suitability and capacity for maintenance by the recipient nations; and where public administrative capacity building in the field of science, technology and engineering requisite for design, development and sustenance of infrastructure in the recipient countries are negated, prospective output becomes problematic.Keywords: vertical partnerships, responsive failure, infrastructural development, developing countries
Procedia PDF Downloads 3317285 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?
Authors: Gu Pang, Bartosz Gebka
Abstract:
We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput
Procedia PDF Downloads 5097284 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 2667283 Knowledge and Organisational Success: Developing a Scale of Knowledge Framework
Authors: Mohammed Almohammedali, David Edgar, Duncan Peter
Abstract:
The aim of this exploratory research is to further understand how organisations can evaluate their activities, which generate knowledge creation, to meet changing stakeholder expectations. A Scale of Knowledge (SoK) Framework is proposed which links knowledge management and organisational activities to changing stakeholder expectations. The framework was informed by the knowledge management literature, as well as empirical work conducted via a single case study of a multi-site hospital organisation in Saudi Arabia. Eight in-depth semi-structured interviews were conducted with managers from across the organisation regarding current and future stakeholder expectations, organisational strategy/activities and knowledge management. Data were analysed using thematic analysis and a hierarchical value map technique to identify activities that can produce further knowledge and consequently impact on how stakeholder expectations are met. The SoK Framework developed may be useful to practitioners as an analytical aid to determine if current organisational activities produce organisational knowledge which helps them meet (increasingly higher levels of) stakeholder expectations. The limitations of the research and avenues for future development of the proposed framework are discussed.Keywords: knowledge creation, knowledge management, organisational knowledge, analytical aid, stakeholders
Procedia PDF Downloads 4377282 A Survey of Baseband Architecture for Software Defined Radio
Authors: M. A. Fodha, H. Benfradj, A. Ghazel
Abstract:
This paper is a survey of recent works that proposes a baseband processor architecture for software defined radio. A classification of different approaches is proposed. The performance of each architecture is also discussed in order to clarify the suitable approaches that meet software-defined radio constraints.Keywords: multi-core architectures, reconfigurable architectures, software defined radio, baseband processor
Procedia PDF Downloads 4787281 Variability Management of Contextual Feature Model in Multi-Software Product Line
Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz
Abstract:
Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.Keywords: software product line, feature model, variability management, multi-SPLs
Procedia PDF Downloads 737280 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence
Authors: Pablo Enrique Sartor Del Giudice
Abstract:
Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.Keywords: football, penalty shootouts, Montecarlo simulation, ABBA
Procedia PDF Downloads 1687279 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk
Authors: Paras Ram, Vikas Kumar
Abstract:
The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model
Procedia PDF Downloads 4267278 Emancipation through the Inclusion of Civil Society in Contemporary Peacebuilding: A Case Study of Peacebuilding Efforts in Colombia
Authors: D. Romero Espitia
Abstract:
Research on peacebuilding has taken a critical turn into examining the neoliberal and hegemonic conception of peace operations. Alternative peacebuilding models have been analyzed, but the scholarly discussion fails to bring them together or form connections between them. The objective of this paper is to rethink peacebuilding by extracting the positive aspects of the various peacebuilding models, connecting them with the local context, and therefore promote emancipation in contemporary peacebuilding efforts. Moreover, local ownership has been widely labelled as one, if not the core principle necessary for a successful peacebuilding project. Yet, definitions of what constitutes the 'local' remain debated. Through a qualitative review of literature, this paper unpacks the contemporary conception of peacebuilding in nexus with 'local ownership' as manifested through civil society. Using Colombia as a case study, this paper argues that a new peacebuilding framework, one that reconsiders the terms of engagement between international and national actors, is needed in order to foster effective peacebuilding efforts in contested transitional states.Keywords: civil society, Colombia, emancipation, peacebuilding
Procedia PDF Downloads 1397277 Interactive Multiple Functions User Interface
Authors: Manjit Singh Sidhu, Waleed Maqableh, Jee Geak Ying
Abstract:
Tangible user interfaces (TUI) that employ markers in the augmented reality (AR) environment has hampered the interactivity between the user and the software application. This is because the user lacks focus on visualizing the contents due to the interaction mechanisms whereby multiple markers may need to be used to perform a particular function. In this research, we have designed a novel TUI user interface where multiple functions could be triggered similar to a natural keyboard thus allowing user to focus more on its digital contents such as 2D/3D, text input, animation and sound. Test results of the user interface with potential users and HCI experts revealed that the multiple functions user interface was new, preferred and appreciated more as opposed to marker based user interface.Keywords: multimedia, augmented reality, engineering, user interface, visualization
Procedia PDF Downloads 4527276 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan
Authors: Basit Aftab, Zhichao Wang, Feng Zhongke
Abstract:
Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.
Procedia PDF Downloads 387275 Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi
Authors: Moses Aron, Elias Mwakilama, Jimmy Namangale
Abstract:
Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources.Keywords: health care, out-patient department, queuing model, sensitivity analysis
Procedia PDF Downloads 4397274 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms
Authors: Saurav S. Rath, Birendra K. David
Abstract:
Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.Keywords: computational fluid dynamics, morphology, quality-by-design, rheology
Procedia PDF Downloads 2717273 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1367272 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 4357271 Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts
Authors: Puneet Katyal, Punit Kumar
Abstract:
A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour.Keywords: TEHL, shear thinning, rheology, conductivity
Procedia PDF Downloads 2047270 Metadiscourse in Chinese and Thai Request Emails: Analysis and Pedagogical Application
Authors: Chia-Ling Hsieh, Kankanit Potikit
Abstract:
Metadiscourse refers to linguistic resources employed by writers to organize text and interact with readers. While metadiscourse has received considerable attention within the field of discourse analysis, few studies have explored the use of metadiscourse in email, one of the most popular forms of computer-mediated communication. Furthermore, the diversity of cross-linguistic research required to uncover the influence of cultural factors on metadiscourse use is lacking. The present study compares metadiscourse markers employed in Chinese and Thai-language request emails with the purpose of discovering cross-cultural similarities and differences that are meaningful and applicable to foreign language teaching. The analysis is based on a corpus of 200 request emails: 100 composed in Chinese and 100 in Thai, with half of the emails from each language data set addressed to professors and the other half addressed to classmates. Adopting Hyland’s model as an analytical framework, two primary categories of metadiscourse are identified. Textual metadiscourse helps to create text coherence, while interpersonal metadiscourse functions to convey authorial stance. Results of the study make clear that both Chinese and Thai-language emails use significantly more interpersonal markers than textual markers, indicating that email, as a unique communicative medium, is characterized by high degrees of concision and interactivity. Users of both languages further deploy similar patterns in writing emails to recipients of different social statuses. Compared with emails addressed to classmates, emails addressed to professors are notably longer and include more transition and engagement markers. Nevertheless, cultural factors do play a role. Emails composed in Thai, for example, include more textual markers than those in Chinese, as Thai favors formal expressions and detailed explanations, while in contrast, emails composed in Chinese employ more interpersonal markers than those in Thai, since Chinese tends to emphasize recipient involvement and attitudinal warmth. These findings thereby demonstrate the combined effects of email as a communicative medium, social status, and cultural values on metadiscourse usage. The study concludes by applying these findings to pedagogical suggestions for teaching email writing to Chinese and Thai language learners based on similarities and differences in metadiscourse strategy between the two languages.Keywords: discourse analysis, email, metadiscourse, writing instruction
Procedia PDF Downloads 1317269 The Military and Motherhood: Identity and Role Expectation within Two Greedy Institutions
Authors: Maureen Montalban
Abstract:
The military is a predominantly male-dominated organisation that has entrenched hierarchical and patriarchal norms. Since 1975, women have been allowed to continue active service in the Australian Defence Force during pregnancy and after the birth of a child; prior to this time, pregnancy was grounds for automatic termination. The military and family, as institutions, make great demands on individuals with respect to their commitment, loyalty, time and energy. This research explores what it means to serve in the Australian Army as a woman through a gender lens, overlaid during a specific time period of their service; that is, during pregnancy, birth, and being a mother. It investigates the external demands faced by servicewomen who are mothers, whether it be from society, the Army, their teammates, their partners, or their children; and how they internally make sense of that with respect to their own identity and role as a mother, servicewoman, partner and as an individual. It also seeks to uncover how Australian Army servicewomen who are also mothers attempt to manage the dilemma of serving two greedy institutions when both expect and demand so much and whether this is, in fact, an impossible dilemma.Keywords: women's health, gender studies, military culture, identity
Procedia PDF Downloads 1087268 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method
Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga
Abstract:
Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses
Procedia PDF Downloads 2647267 Short Life Cycle Time Series Forecasting
Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar
Abstract:
The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.Keywords: forecast, short life cycle product, structured judgement, time series
Procedia PDF Downloads 3627266 A Prediction Model of Adopting IPTV
Authors: Jeonghwan Jeon
Abstract:
With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.Keywords: prediction, adoption, IPTV, CaRBS
Procedia PDF Downloads 4217265 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 4677264 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm
Authors: Lydia Novozhilova, Vladimir Urazhdin
Abstract:
An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier
Procedia PDF Downloads 3307263 A Study on the New Weapon Requirements Analytics Using Simulations and Big Data
Authors: Won Il Jung, Gene Lee, Luis Rabelo
Abstract:
Since many weapon systems are getting more complex and diverse, various problems occur in terms of the acquisition cost, time, and performance limitation. As a matter of fact, the experiment execution in real world is costly, dangerous, and time-consuming to obtain Required Operational Characteristics (ROC) for a new weapon acquisition although enhancing the fidelity of experiment results. Also, until presently most of the research contained a large amount of assumptions so therefore a bias is present in the experiment results. At this moment, the new methodology is proposed to solve these problems without a variety of assumptions. ROC of the new weapon system is developed through the new methodology, which is a way to analyze big data generated by simulating various scenarios based on virtual and constructive models which are involving 6 Degrees of Freedom (6DoF). The new methodology enables us to identify unbiased ROC on new weapons by reducing assumptions and provide support in terms of the optimal weapon systems acquisition.Keywords: big data, required operational characteristics (ROC), virtual and constructive models, weapon acquisition
Procedia PDF Downloads 292