Search results for: student-centered teaching and learning
5663 A Novel Exploration/Exploitation Policy Accelerating Learning In Both Stationary And Non Stationary Environment Navigation Tasks
Authors: Wiem Zemzem, Moncef Tagina
Abstract:
In this work, we are addressing the problem of an autonomous mobile robot navigating in a large, unknown and dynamic environment using reinforcement learning abilities. This problem is principally related to the exploration/exploitation dilemma, especially the need to find a solution letting the robot detect the environmental change and also learn in order to adapt to the new environmental form without ignoring knowledge already acquired. Firstly, a new action selection strategy, called ε-greedy-MPA (the ε-greedy policy favoring the most promising actions) is proposed. Unlike existing exploration/exploitation policies (EEPs) such as ε-greedy and Boltzmann, the new EEP doesn’t only rely on the information of the actual state but also uses those of the eventual next states. Secondly, as the environment is large, an exploration favoring least recently visited states is added to the proposed EEP in order to accelerate learning. Finally, various simulations with ball-catching problem have been conducted to evaluate the ε-greedy-MPA policy. The results of simulated experiments show that combining this policy with the Qlearning method is more effective and efficient compared with the ε-greedy policy in stationary environments and the utility-based reinforcement learning approach in non stationary environments.Keywords: autonomous mobile robot, exploration/ exploitation policy, large, dynamic environment, reinforcement learning
Procedia PDF Downloads 4215662 Creating Inclusive Information Services: Librarians’ Design-Thinking Approach to Helping Students Succeed in the Digital Age
Authors: Yi Ding
Abstract:
With the rapid development of educational technologies, higher education institutions are facing the challenge of creating an inclusive learning environment for students from diverse backgrounds. Academic libraries, the hubs of research, instruction, and innovation at higher educational institutions, are facing the same challenge. While academic librarians worldwide have been working hard to provide services for emerging information technology such as information literacy education, online learning support, and scholarly communication advocacy, the problem of digital exclusion remains a difficult one at higher education institutions. Information services provided by academic libraries can result in the digital exclusion of students from diverse backgrounds, such as students with various digital readiness levels, students with disabilities, as well as English-as-a-Second-Language learners. This research study shows how academic librarians can design digital learning objects that are cognizant of differences in learner traits and student profiles through the lens of design thinking. By demonstrating how the design process of digital learning objects can take into consideration users’ needs, experiences, and engagement with different technologies, this research study explains design principles of accessibility, connectivity, and scalability in creating inclusive digital learning objects as shown in various case studies. Equipped with the mindset and techniques to be mindful of diverse student learning traits and profiles when designing information services, academic libraries can improve the digital inclusion and ultimately student success at higher education institutions.Keywords: academic librarians, digital inclusion, information services, digital learning objects, student success
Procedia PDF Downloads 2185661 The Effect of Mobile Technology Use in Education: A Meta-Analysis Study
Authors: Şirin Küçük, Ayşe Kök, İsmail Şahin
Abstract:
Mobile devices are very popular and useful tools for assisting people in daily life. With the advancement of mobile technologies, the issue of mobile learning has been widely investigated in education. Many researches consider that it is important to integrate pedagogical and technical strengths of mobile technology into learning environments. For this reason, the purpose of this research is to examine the effect of mobile technology use in education with meta-analysis method. Meta-analysis is a statistical technique which combines the findings of independent studies in a specific subject. In this respect, the articles will be examined by searching the databases for researches which are conducted between 2005 and 2014. It is expected that the results of this research will contribute to future research related to mobile technology use in education.Keywords: mobile learning, meta-analysis, mobile technology, education
Procedia PDF Downloads 7245660 Collaborative Online International Learning with Different Learning Goals: A Second Language Curriculum Perspective
Authors: Andrew Nowlan
Abstract:
During the Coronavirus pandemic, collaborative online international learning (COIL) emerged as an alternative to overseas sojourns. However, now that face-to-face classes have resumed and students are studying abroad, the rationale for doing COIL is not always clear amongst educators and students. Also, the logistics of COIL become increasingly complicated when participants involved in a potential collaboration have different second language (L2) learning goals. In this paper, the researcher will report on a study involving two bilingual, cross-cultural COIL courses between students at a university in Japan and those studying in North America, from April to December, 2022. The students in Japan were enrolled in an intercultural communication class in their L2 of English, while the students in Canada and the United States were studying intermediate Japanese as their L2. Based on a qualitative survey and journaling data received from 31 students in Japan, and employing a transcendental phenomenological research design, the researcher will highlight the students’ essence of experience during COIL. Essentially, students benefited from the experience through improved communicative competences and increased knowledge of the target culture, even when the L2 learning goals between institutions differed. Students also reported that the COIL experience was effective in preparation for actual study abroad, as opposed to a replacement for it, which challenges the existing literature. Both educators and administrators will be exposed to the perceptions of Japanese university students towards COIL, which could be generalized to other higher education contexts, including those in Southeast Asia. Readers will also be exposed to ideas for developing more effective pre-departure study abroad programs and domestic intercultural curriculum through COIL, even when L2 learning goals may differ between participants.Keywords: collaborative online international learning, study abroad, phenomenology, EdTech, intercultural communication
Procedia PDF Downloads 865659 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris
Authors: Suhani Srivastava
Abstract:
This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa
Procedia PDF Downloads 305658 Modifying Assessment Modes in the Science Classroom as a Solution to Examination Malpractice
Authors: Catherine Omole
Abstract:
Examination malpractice includes acts that temper with collecting accurate results during the conduct of an examination, thereby giving undue advantage to a student over his colleagues. Even though examination malpractice has been a lingering problem, examinations may not be easy to do away with completely as it is an important feedback tool in the learning process with several other functions e.g for the purpose of selection, placement, certification and promotion. Examination malpractice has created a lot of problems such as a relying on a weak work force based on false assessment results. The question is why is this problem still persisting, despite measures that have been taken to curb this ugly trend over the years? This opinion paper has identified modifications that could help relieve the student of the examination stress and thus increase the student’s effort towards effective learning and discourage examination malpractice in the long run.Keywords: assessment, examination malpractice, learning, science classroom
Procedia PDF Downloads 2665657 Compare the Effectiveness of Web Based and Blended Learning on Paediatric Basic Life Support
Authors: Maria Janet, Anita David, P. Vijayasamundeeswarimaria
Abstract:
Introduction: The main purpose of this study is to compare the effectiveness of web-based and blended learning on Paediatric Basic Life Support on competency among undergraduate nursing students in selected nursing colleges in Chennai. Materials and methods: A descriptive pre-test and post-test study design were used for this study. Samples of 100 Fourth year B.Sc., nursing students at Sri Ramachandra Faculty of Nursing SRIHER, Chennai, 100 Fourth year B.Sc., nursing students at Apollo College of Nursing, Chennai, were selected by purposive sampling technique. The instrument used for data collection was Knowledge Questionnaire on Paediatric Basic Life Support (PBLS). It consists of 29 questions on the general expansion of Basic Life Support and Cardiopulmonary Resuscitation, Prerequisites of Basic Life Support, and Knowledge on Paediatric Basic Life Support in which each question has four multiple choices answers, each right answer carrying one mark and no negative scoring. This questionnaire was formed with reference to AHA 2020 (American Heart Association) revised guidelines. Results: After the post-test, in the web-based learning group, 58.8% of the students had an inadequate level of objective performance score, while 41.1% of them had an adequate level of objective performance score. In the blended learning group, 26.5% of the students had an inadequate level of an objective performance score, and 73.4% of the students had an adequate level of an objective performance score. There was an association between the post-test level of knowledge and the demographic variables of undergraduate nursing students undergoing blended learning. The age was significant at a p-value of 0.01, and the performance of BLS before was significant at a p-value of 0.05. The results show that there was a significant positive correlation between knowledge and objective performance score of undergraduate nursing students undergoing web-based learning on paediatric basic life support.Keywords: basic life support, paediatric basic life support, web-based learning, blended learning
Procedia PDF Downloads 725656 Learning to Translate by Learning to Communicate to an Entailment Classifier
Authors: Szymon Rutkowski, Tomasz Korbak
Abstract:
We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning
Procedia PDF Downloads 1325655 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 245654 A Survey on E-Guide to Educational Tour Planning in Environmental Science among Standard Six Primary School Students the Ministry of Education Malaysia
Authors: A.Halim Sahelan, Mohd Halid Abu, Jamaluddin Hashim, Zulisman Maksom, Mohd Afif Md Nasir
Abstract:
This study aims to assess the students' needs for the tour planning e-guide. The study is developing on the contribution and importance of the Educational Tour Planning Guide (ETP) is a multimedia courseware as one of the effective methods in teaching and learning of environmental science among the students in primary schools of the Ministry of Education, Malaysia. It is to provide the student with knowledge and experience about tourism, environmental science activities and process. E-guide to ETP also hopes to strengthen the student understanding toward the subject learns in the tourism environmental science. In order to assess the student's needs on the e-Guide to Educational Tour Planning in Environmental Science, the study has produced a similar e-Guide to ETP in the form as a courseware to be tested during the study. The study has involved several steps in order to be completed. It is such as the formulation of the problem, the review of the literature, the formulation of the study methodology, the production of the e-Guide to ETP, field survey and finally the analyses and discussion made on the data gathered during the study. The survey has involved 100 respondents among the students in standard six primary schools in Kluang Johor. Through the findings, the study indicates that the currently tested product is acceptable among the students in learning environmental science as a guide to plan for the tour. The findings also show a slight difference between the respondents who are using the e-Guide to ETP, and those who are not on the basis of the e-Guide to ETP results. Due the important for the study, the researcher hopes to be having a fair discussion and excellence, recommendation for the development of the product of the current study. This report is written also important to provide a written reference for the future related study.Keywords: the tour planning e-guide, the Educational Tour Planning Guide, environmental science, multimedia course ware
Procedia PDF Downloads 3625653 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students
Authors: Sobhy Fathy A. Hashesh
Abstract:
The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.Keywords: AFC, STEAM, lego education, Al-Andalus fused curriculum, mechatronics
Procedia PDF Downloads 2185652 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 4215651 Nature of Science in Physics Textbooks – Example of Quebec Province
Authors: Brahim El Fadil
Abstract:
The nature of science as a solution (NOS) to life problems is well established in school activities the world over. However, this study reveals the lack of representation of the NOS in science textbooks used in Quebec Province. A content analysis method was adopted to analyze the NOS in relation to optics knowledge and teaching-learning activities in Grade 9 science and technology textbooks and Grade 11 physics textbooks. The selected textbooks were approved and authorized by the Provincial Ministry of Education. Our analysis points out that most of these editions provided a poor representation of NOS. None of them indicates that scientific knowledge is subject to change, even though the history of optics reveals evolutionary and revolutionary changes. Moreover, the analysis shows that textbooks place little emphasis on the discussion of scientific laws and theories. Few of them argue that scientific inquiries are required to gain a deep understanding of scientific concepts. Moreover, they rarely present empirical evidence to support their arguments.Keywords: nature of science, history of optics, geometrical theory of optics, wave theory of optics
Procedia PDF Downloads 805650 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning
Authors: Karthik Mittal
Abstract:
This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA
Procedia PDF Downloads 1495649 Visualization-Based Feature Extraction for Classification in Real-Time Interaction
Authors: Ágoston Nagy
Abstract:
This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.Keywords: gesture recognition, machine learning, real-time interaction, visualization
Procedia PDF Downloads 3585648 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions
Authors: Tesfaye Mengistu
Abstract:
This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission
Procedia PDF Downloads 905647 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture
Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf
Abstract:
Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer
Procedia PDF Downloads 1225646 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences
Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam
Abstract:
The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.Keywords: learning experiences, innovation, traditional games, trainee teachers
Procedia PDF Downloads 3355645 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 815644 Rights, Differences and Inclusion: The Role of Transdisciplinary Approach in the Education for Diversity
Authors: Ana Campina, Maria Manuela Magalhaes, Eusebio André Machado, Cristina Costa-Lobo
Abstract:
Inclusive school advocates respect for differences, for equal opportunities and for a quality education for all, including for students with special educational needs. In the pursuit of educational equity, guaranteeing equality in access and results, it becomes the responsibility of the school to recognize students' needs, adapting to the various styles and rhythms of learning, ensuring the adequacy of curricula, strategies and resources, materials and humans. This paper presents a set of theoretical reflections in the disciplinary interface between legal and education sciences, school administration and management, with the aim of understand the real inclusion characteristics in a balance with the inclusion policies and the need(s) of an education for Human Rights, especially for diversity. Considering the actual social complexity but the important education instruments and strategies, mostly patented in the policies, this paper aims expose the existing contexts opposed to the laws, policies and inclusion educational needs. More than a single study, this research aims to develop a map of the reality and the guidelines to implement the action. The results point to the usefulness and pertinence of a school in which educational managers, teachers, parents, and students, are involved in the creation, implementation and monitoring of flexible curricula and adapted to the educational needs of students, promoting a collaborative work among teachers. We are then faced with a scenario that points to the need to reflect on the legislation and curricular management of inclusive classes and to operationalize the processes of elaboration of curricular adaptations and differentiation in the classroom. The transdisciplinary is a pedagogic and social education perfect approach using the Human Rights binomio – teaching and learning – supported by the inclusion laws according to the realistic needs for an effective successful society construction.Keywords: rights, transdisciplinary, inclusion policies, education for diversity
Procedia PDF Downloads 3935643 Migrant Women English Instructors' Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada
Authors: Justine Jun
Abstract:
This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Although many scholars have conducted research studies on internationally educated teachers and their professional and employment challenges, few studies have recorded migrant women English language instructors’ professional learning and support experiences in post-secondary English language programs in Canada. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences?; (2) How transformative have their learning experiences been at work?; (3) How have their colleagues and administrators influenced their transformative learning?; (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see?; (5) What have their learning experiences transformed?; (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This research has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field.Keywords: English teacher education, professional learning, transformative learning theory, workplace learning
Procedia PDF Downloads 1355642 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks
Authors: Amal Khalifa, Nicolas Vana Santos
Abstract:
Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.Keywords: deep learning, steganography, image, discrete wavelet transform, fusion
Procedia PDF Downloads 1005641 A Team-Based Learning Game Guided by a Social Robot
Authors: Gila Kurtz, Dan Kohen Vacs
Abstract:
Social robots (SR) is an emerging field striving to deploy computers capable of resembling human shapes and mimicking human movements, gestures, and behaviors. The evolving capability of SR to interact with human offers groundbreaking ways for learning and training opportunities. Studies show that SR can offer instructional experiences for fostering creativity, entertainment, enjoyment, and curiosity. These added values are essential for empowering instructional opportunities as gamified learning experiences. We present our project focused on deploying an activity to be experienced in an escape room aimed at team-based learning scaffolded by an SR, NAO. An escape room is a well-known approach for gamified activities focused on a simulated scenario experienced by team-based participants. Usually, the simulation takes place in a physical environment where participants must complete a series of challenges in a limited amount of time. During this experience, players learn something about the assigned topic of the room. In the current learning simulation, students must "save the nation" by locating sensitive information stolen and stored in a vault of four locks. Team members have to look for hints and solve riddles mediated by NAO. Each solution provides a unique code for opening one of the four locks. NAO is also used to provide ongoing feedback on the team's performance. We captured the proceeding of our activity and used it to conduct an evaluation study among ten experts in related areas. The experts were interviewed on their overall assessment of the learning activity and their perception of the added value related to the robot. The results were very encouraging on the feasibility that NAO can serve as a motivational tutor in adults' collaborative game-based learning. We believe that this study marks the first step toward a template for developing innovative team-based training using escape rooms supported by a humanoid robot.Keywords: social robot, NAO, learning, team based activity, escape room
Procedia PDF Downloads 715640 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 1525639 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 1455638 Entrepreneurship Education Revised: Merging a Theory-Based and Action-Based Framework for Entrepreneurial Narratives' Impact as an Awareness-Raising Teaching Tool
Authors: Katharina Fellnhofer, Kaisu Puumalainen
Abstract:
Despite the current worldwide increasing interest in entrepreneurship education (EE), little attention has been paid to innovative web-based ways such as the narrative approach by telling individual stories of entrepreneurs via multimedia for demonstrating the impact on individuals towards entrepreneurship. In addition, this research discipline is faced with no consensus regarding its effective content of teaching materials and tools. Therefore, a qualitative hypothesis-generating research contribution is required to aim at drawing new insights from published works in the EE field of research to serve for future research related to multimedia entrepreneurial narratives. Based on this background, our effort will focus on finding support regarding following introductory statement: Multimedia success and failure stories of real entrepreneurs show potential to change perceptions towards entrepreneurship in a positive way. The proposed qualitative conceptual paper will introduce the underlying background for this research framework. Therefore, as a qualitative hypothesis-generating research contribution it aims at drawing new insights from published works in the EE field of research related to entrepreneurial narratives to serve for future research. With the means of the triangulation of multiple theories, we will utilize the foundation for multimedia-based entrepreneurial narratives applying a learning-through-multimedia-real-entrepreneurial-narratives pedagogical tool to facilitate entrepreneurship. Our effort will help to demystify how value-oriented entrepreneurs telling their stories multimedia can simultaneously enhance EE. Therefore, the paper will build new-fangled bridges between well-cited theoretical constructs to build a robust research framework. Overall, the intended contribution seeks to emphasize future research of currently under-researched issues in the EE sphere, which are considered to be essential not only to academia, as well as to business and society having future jobs-providing growth-oriented entrepreneurs in mind. The Authors would like to thank the Austrian Science Fund FWF: [J3740 – G27].Keywords: entrepreneurship education, entrepreneurial attitudes and perceptions, entrepreneurial intention, entrepreneurial narratives
Procedia PDF Downloads 2675637 Open Educational Resource in Online Mathematics Learning
Authors: Haohao Wang
Abstract:
Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.Keywords: online learning, open educational resources, multimedia, technology
Procedia PDF Downloads 3805636 The Factors Affecting the Development of the Media and Animations for Vocational School in Thailand
Authors: Tanit Pruktara
Abstract:
The research aimed to study the students’ learning achievement and awareness level on electrical energy consumption and conservation and also to investigate the students’ attitude on the developed multimedia supplemented instructional unit for learning household electrical energy consumption and conservation in grade 10 Thailand student. This study used a quantitative method using MCQ for pre and post-achievement tests and Likert scales for awareness and attitude survey questionnaires. The results from this were employed to improve the multimedia to be appropriate for the classroom and with real life situations in the second phase, the main study. The experimental results showed that the developed learning unit significantly improved the students’ learning achievement as well as their awareness of electric energy conservation. Additional we found the student will enjoy participating in class activities when the lessons are taught using multimedia and helps them to develop the relevance between the course and real world situations.Keywords: lesson plan, media and animations, training course, vocational school in Thailand
Procedia PDF Downloads 1835635 Augmented Reality for Children Vocabulary Learning: Case Study in a Macau Kindergarten
Authors: R. W. Chan, Kan Kan Chan
Abstract:
Augmented Reality (AR), with the affordance of bridging between real world and virtual world, brings users immersive experience. It has been applied in education gradually and even come into practice in student daily learning. However, a systematic review shows that there are limited researches in the area of vocabulary acquisition in early childhood education. Since kindergarten is a key stage where children acquire language and AR as an emerging and potential technology to support the vocabulary acquisition, this study aims to explore its value in in real classroom with teacher’s view. Participants were a class of 5 to 6 years old kids studying in a Macau school that follows Cambridge curriculum and emphasizes multicultural ethos. There were 11 boys, 13 girls, and in a total of 24 kids. They learnt animal vocabulary using mobile device and AR flashcards, IPad to scan AR flashcards and interact with pop-up virtual objects. In order to estimate the effectiveness of using Augmented Reality, children attended vocabulary pre-posttest. In addition, teacher interview was administrated after this learning activity to seek practitioner’s opinion towards this technology. For data analysis, paired samples t-test was utilized to measure the instructional effect based on the pre-posttest data. Result shows that Augmented Reality could significantly enhance children vocabulary learning with large effect size. Teachers indicated that children enjoyed the AR learning activity but clear instruction is needed. Suggestions for the future implementation of vocabulary acquisition using AR are suggested.Keywords: augmented reality, kindergarten children, vocabulary learning, Macau
Procedia PDF Downloads 1545634 Bringing Feminist Critical Pedagogy to the ESP Higher Education Classes: Feasibility and Challenges
Authors: Samira Essabari
Abstract:
What, unfortunately, governs the Moroccan educational philosophy and policy today is a concerning neoliberal discourse with its obsession with market logics and individualism. Critical education has been advocated to resist the neoliberal hegemony since it holds the promise to reclaim the social function of education. Significantly, the mounting forms of sexism and discrimination against women combined with hegemonic educational practices are jeopardizing the social function of teaching and learning, hence the relevance of feminist critical pedagogy. A substantial body of research worldwide has explored the ways in which feminist pedagogy can develop feminist consciousness and examine power relations in different educational contexts. In Morocco, however, the feasibility of feminist pedagogy has not been researched despite the overwhelming interest in gender issues in different educational settings. The research on critical pedagogies in Morocco remains very promising. Yet, most studies were conducted in contexts which are already engaged with issues of theory, discourse, and discourse analysis. The field of ESP ( English for Specific Purposes) is pragmatic by nature, and priority in research has been given to questions that adhere to the mainstream concerns of need analysis and study skills and ignore issues of power, gender power relations, and intersectional forms of oppression. To address these gaps in the existing literature, this participatory action research seeks to investigate the feasibility of Feminist pedagogy in ESP higher education and how it can foster feminist critical consciousness among ESP students without compromising their language learning needs. The findings of this research will contribute to research on critical applied linguistics and critical ESP more specifically and add to the practice of critical pedagogies in Moroccan higher education by providing in-depth insights into the enablers and barriers to the implementation of feminist critical pedagogy, which is still feeling its way into the educational scene in Morocco.Keywords: feminist pedagogy, critical pedagogy, power relations, gender, ESP, intersectionality
Procedia PDF Downloads 132