Search results for: mMachine learning
4360 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2904359 Adaptive Programming for Indigenous Early Learning: The Early Years Model
Authors: Rachel Buchanan, Rebecca LaRiviere
Abstract:
Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today.Keywords: culturally adapted programming, indigenous early learning, principles-based approach, program scaling
Procedia PDF Downloads 1844358 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1024357 The Impact of the COVID-19 Pandemic on the Armenian Higher Education System: Challenges аnd Perspectives
Authors: Armine Vahanyan
Abstract:
Humanity has been still coping with the new COVID-19 pandemic. Healthcare providers, economists, psychologists, and other specialists speak about the impact of the virus on different spheres of our life. In the list of similar discussions, the impact of pandemics on global education is of utmost importance. Ideally, providing quality education services should be crucial, and the ways education programs are being adapted will determine the success or failure of the service providers. The paper aims to summarize the research touching upon the current situation of higher education in Armenia. The research includes data from official reports, surveys among education leads, faculty, and students, as well as personal observations and consideration. Through descriptive analysis, the findings of the research are being presented from various aspects. Interim results of the research unveiled two major issues in the sector of higher education in Armenia. On the one hand, the entire compulsory digitization of instruction, assessment, and grading has evoked serious gaps related to the lack of technical competencies. There is an urgent need for professional development programs that will address most of the concerns due to the shift to the online instruction mode. On the other hand, online teaching and learning require revision and adaptation of the existing curricula. Given that the content of certain programs may not be compromised, the teaching methods, the assignments, and evaluation require profound transformation, which will still be in line with course learning outcomes and student learning outcomes. The given paper focuses on the ways the mentioned issues are being addressed in Armenia. The extent of commitment for changes and adaptability to the new situation varies from the government-funded and private universities. In particular, the paper compares and contrasts activities and measures taken at the Armenian State Pedagogical University and the American University of Armenia. Thus, the Pedagogical University focused on the use of Google Classroom as the only means for teaching and learning as well as adopted the compulsory synchronous instruction mode. The American University, on the contrary, kept practicing the academic freedom, enabling both synchronous and asynchronous instruction modes, ensuring alignment of the course learning outcomes and student learning outcomes. The State University utilized the assignments and assessment, which would work for the on-campus instruction mode, while the American university employed a variety of assignments applicable for online teaching mode. The latter has suggested the utilization of multiple apps, internet sources, and online library access for a better online instant. Discussions with faculty through online forums and/or professional development workshops also facilitate restructuring and adaptation of the courses. Finally, the paper will synthesize the results of the undertaken research and will outline the e-learning perspectives and opportunities boosted by the known devastating healthcare issue.Keywords: assessment, compulsory digitization of education services, online teaching, instruction mode, program restructuring
Procedia PDF Downloads 1224356 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context
Authors: Andrea Fiorista
Abstract:
The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL
Procedia PDF Downloads 864355 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3024354 The Analysis of Gizmos Online Program as Mathematics Diagnostic Program: A Story from an Indonesian Private School
Authors: Shofiayuningtyas Luftiani
Abstract:
Some private schools in Indonesia started integrating the online program Gizmos in the teaching-learning process. Gizmos was developed to supplement the existing curriculum by integrating it into the instructional programs. The program has some features using an inquiry-based simulation, in which students conduct exploration by using a worksheet while teachers use the teacher guidelines to direct and assess students’ performance In this study, the discussion about Gizmos highlights its features as the assessment media of mathematics learning for secondary school students. The discussion is based on the case study and literature review from the Indonesian context. The purpose of applying Gizmos as an assessment media refers to the diagnostic assessment. As a part of the diagnostic assessment, the teachers review the student exploration sheet, analyze particularly in the students’ difficulties and consider findings in planning future learning process. This assessment becomes important since the teacher needs the data about students’ persistent weaknesses. Additionally, this program also helps to build student’ understanding by its interactive simulation. Currently, the assessment over-emphasizes the students’ answers in the worksheet based on the provided answer keys while students perform their skill in translating the question, doing the simulation and answering the question. Whereas, the assessment should involve the multiple perspectives and sources of students’ performance since teacher should adjust the instructional programs with the complexity of students’ learning needs and styles. Consequently, the approach to improving the assessment components is selected to challenge the current assessment. The purpose of this challenge is to involve not only the cognitive diagnosis but also the analysis of skills and error. Concerning the selected setting for this diagnostic assessment that develops the combination of cognitive diagnosis, skills analysis and error analysis, the teachers should create an assessment rubric. The rubric plays the important role as the guide to provide a set of criteria for the assessment. Without the precise rubric, the teacher potentially ineffectively documents and follows up the data about students at risk of failure. Furthermore, the teachers who employ the program of Gizmos as the diagnostic assessment might encounter some obstacles. Based on the condition of assessment in the selected setting, the obstacles involve the time constrain, the reluctance of higher teaching burden and the students’ behavior. Consequently, the teacher who chooses the Gizmos with those approaches has to plan, implement and evaluate the assessment. The main point of this assessment is not in the result of students’ worksheet. However, the diagnostic assessment has the two-stage process; the process to prompt and effectively follow-up both individual weaknesses and those of the learning process. Ultimately, the discussion of Gizmos as the media of the diagnostic assessment refers to the effort to improve the mathematical learning process.Keywords: diagnostic assessment, error analysis, Gizmos online program, skills analysis
Procedia PDF Downloads 1804353 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action
Authors: Elisabeth Unterfrauner, Christian Voigt
Abstract:
Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement
Procedia PDF Downloads 1294352 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD
Authors: Kourosh Modarresi
Abstract:
The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage
Procedia PDF Downloads 3084351 Training as Barrier for Implementing Inclusion for Students with Learning Difficulties in Mainstream Primary Schools in Saudi Arabia
Authors: Mohammed Alhammad
Abstract:
The movement towards the inclusion of students with special educational needs (SEN) in mainstream schools has become widely accepted practice in many countries. However in Saudi Arabia, this is not happening. Instead the practice for students with learning difficulties (LD) is to study in special classrooms in mainstream schools and they are not included with their peers, except at break times and morning assembly, and on school trips. There are a number of barriers that face implementing inclusion for students with LD in mainstream classrooms: one such barrier is the training of teachers. The training, either pre- or in-service, that teachers receive is seen as playing an important role in leading to the successful implementation of inclusion. The aim of this presentation is to explore how pre-service training and in-service training are acting as barriers for implementing inclusion of students with LD in mainstream primary schools in Saudi Arabia from the perspective of teachers. The qualitative research approach was used to explore this barrier. Twenty-four teachers (general education teachers, special education teachers) were interviewed using semi-structured interview and a number of documents were used as method of data collection. The result showed teachers felt that not much attention was paid to inclusion in pre-services training for general education teachers and special education teachers in Saudi Arabia. In addition, pre-service training for general education teachers does not normally including modules on special education. Regarding the in-service training, no courses at all about inclusion are provided for teachers. Furthermore, training courses in special education are few. As result, the knowledge and skills required to implemented inclusion successfully.Keywords: inclusion, learning difficulties, Saudi Arabia, training
Procedia PDF Downloads 3744350 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3504349 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 1884348 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1094347 Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices: Construction Proceedings and Validation
Authors: Cristina Costa-Lobo, Sandra Fernandes, Miguel Magalhães, José Dinis-Carvalho, Alfredo Regueiro, Ana Carvalho
Abstract:
This paper is a report on the findings of the construction and the validation of a questionnaire monetized in a portuguese higher education context with undergraduate students. The Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices consists of six scales: Critical appraisal of the project, Developed Learning and Skills, Teamwork, Teacher and Tutor Roles, Evaluation of Student Performance, and Project Effectiveness as a Teaching-Learning Methodology. The proceedings of its construction are analyzed, and the validity and internal consistency analysis are described. Findings indicate good indicators of validity, good fidelity and an interpretable factorial structure.Keywords: entrepreneurship project, higher education, psychopedagogical practices, teacher and tutor roles
Procedia PDF Downloads 3804346 The Effectiveness of Concept Mapping as a Tool for Developing Critical Thinking in Undergraduate Medical Education: A BEME Systematic Review: BEME Guide No. 81
Authors: Marta Fonseca, Pedro Marvão, Beatriz Oliveira, Bruno Heleno, Pedro Carreiro-Martins, Nuno Neuparth, António Rendas
Abstract:
Background: Concept maps (CMs) visually represent hierarchical connections among related ideas. They foster logical organization and clarify idea relationships, potentially aiding medical students in critical thinking (to think clearly and rationally about what to do or what to believe). However, there are inconsistent claims about the use of CMs in undergraduate medical education. Our three research questions are: 1) What studies have been published on concept mapping in undergraduate medical education? 2) What was the impact of CMs on students’ critical thinking? 3) How and why have these interventions had an educational impact? Methods: Eight databases were systematically searched (plus a manual and an additional search were conducted). After eliminating duplicate entries, titles, and abstracts, and full-texts were independently screened by two authors. Data extraction and quality assessment of the studies were independently performed by two authors. Qualitative and quantitative data were integrated using mixed-methods. The results were reported using the structured approach to the reporting in healthcare education of evidence synthesis statement and BEME guidance. Results: Thirty-nine studies were included from 26 journals (19 quantitative, 8 qualitative and 12 mixed-methods studies). CMs were considered as a tool to promote critical thinking, both in the perception of students and tutors, as well as in assessing students’ knowledge and/or skills. In addition to their role as facilitators of knowledge integration and critical thinking, CMs were considered both teaching and learning methods. Conclusions: CMs are teaching and learning tools which seem to help medical students develop critical thinking. This is due to the flexibility of the tool as a facilitator of knowledge integration, as a learning and teaching method. The wide range of contexts, purposes, and variations in how CMs and instruments to assess critical thinking are used increase our confidence that the positive effects are consistent.Keywords: concept map, medical education, undergraduate, critical thinking, meaningful learning
Procedia PDF Downloads 1234345 Linking Pre-Class Engagement with Academic Achievement: The Role of Quests in a Flipped Chemistry Course
Authors: Anthony J. Rojas
Abstract:
In flipped classroom environments, students are tasked with engaging in pre-class learning to maximize the effectiveness of in-class time. This study investigates the use of ‘Quests’, brief formative assessments administered at the start of class, to evaluate student understanding of assigned pre-class materials in an undergraduate chemistry course. Students completed Quests via Microsoft Forms, based on content from instructional videos and worksheets, and these assessments were mandatory, with no opportunity for make-up. This paper examines the correlation between Quest performance and overall course success, finding that students who performed well on the Quests consistently achieved higher final grades in the course. The findings suggest that Quests are effective in both reinforcing student engagement with pre-class content and predicting their broader academic performance. The implications of these results for flipped classroom strategies and student learning outcomes will be discussed.Keywords: chemistry, flipped classroom, attendance, assessments
Procedia PDF Downloads 194344 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments
Authors: Lana Burmistrova
Abstract:
Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.Keywords: attention, blindness, memory, music learning, strategy
Procedia PDF Downloads 1834343 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study
Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah
Abstract:
This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language
Procedia PDF Downloads 294342 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 924341 Studying the Relationship Between Washback Effects of IELTS Test on Iranian Language Teachers, Teaching Strategies and Candidates
Authors: Afsaneh Jasmine Majidi
Abstract:
Language testing is an important part of language teaching experience and language learning process as it presents assessment strategies for teachers to evaluate the efficiency of teaching and for learners to examine their outcomes. However, language testing is demanding and challenging because it should provide the opportunity for proper and objective decision. In addition to all the efforts test designers put to design valid and reliable tests, there are some other determining factors which are even more complex and complicated. These factors affect the educational system, individuals, and society, and the impact of the tests vary according to the scope of the test. Seemingly, the impact of a simple classroom assessment is not the same as that of high stake tests such as International English Language Testing System (IELTS). As the importance of the test increases, it affects wider domain. Accordingly, the impacts of high stake tests are reflected not only in teaching, learning strategies but also in society. Testing experts use the term ‘washback’ or ‘impact’ to define the different effects of a test on teaching, learning, and community. This paper first looks at the theoretical background of ‘washback’ and ‘impact’ in language testing by reviewing of relevant literature in the field and then investigates washback effects of IELTS test of on Iranian IELTS teachers and students. The study found significant relationship between the washback effect of IELTS test and teaching strategies of Iranian IELTS teachers as well as performance of Iranian IELTS candidates and their community.Keywords: high stake tests, IELTS, Iranian Candidates, language testing, test impact, washback
Procedia PDF Downloads 3274340 A Book Review of Inside the Battle of Algiers, by Zohra Drif: A Thematic Analysis on Women’s Agency
Authors: W. Zekri
Abstract:
This paper explores Zohra Drif’s memoir, Inside the Battle of Algiers, which narrates her desires as a student to become a revolutionary activist. She exemplified, in her narrative, the different roles, she and her fellows performed as combatants in the Casbah during the Algerian Revolution 1954-1962. This book review aims to evaluate the concept of women’s agency through education and language learning, and its impact on empowering women’s desires. Close-reading method and thematic analysis are used to explore the text. The analysis identified themes that refine the meaning of agency which are social and cultural supports, education, and language proficiency. These themes aim to contribute to the representation in Inside the Battle of Algiers of a woman guerrilla who engaged herself to perform national acts of resistance.Keywords: agency, education, learning, women
Procedia PDF Downloads 1744339 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1064338 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1234337 A Digital Environment for Developing Mathematical Abilities in Children with Autism Spectrum Disorder
Authors: M. Isabel Santos, Ana Breda, Ana Margarida Almeida
Abstract:
Research on academic abilities of individuals with autism spectrum disorder (ASD) underlines the importance of mathematics interventions. Yet the proposal of digital applications for children and youth with ASD continues to attract little attention, namely, regarding the development of mathematical reasoning, being the use of the digital technologies an area of great interest for individuals with this disorder and its use is certainly a facilitative strategy in the development of their mathematical abilities. The use of digital technologies can be an effective way to create innovative learning opportunities to these students and to develop creative, personalized and constructive environments, where they can develop differentiated abilities. The children with ASD often respond well to learning activities involving information presented visually. In this context, we present the digital Learning Environment on Mathematics for Autistic children (LEMA) that was a research project conducive to a PhD in Multimedia in Education and was developed by the Thematic Line Geometrix, located in the Department of Mathematics, in a collaboration effort with DigiMedia Research Center, of the Department of Communication and Art (University of Aveiro, Portugal). LEMA is a digital mathematical learning environment which activities are dynamically adapted to the user’s profile, towards the development of mathematical abilities of children aged 6–12 years diagnosed with ASD. LEMA has already been evaluated with end-users (both students and teacher’s experts) and based on the analysis of the collected data readjustments were made, enabling the continuous improvement of the prototype, namely considering the integration of universal design for learning (UDL) approaches, which are of most importance in ASD, due to its heterogeneity. The learning strategies incorporated in LEMA are: (i) provide options to custom choice of math activities, according to user’s profile; (ii) integrates simple interfaces with few elements, presenting only the features and content needed for the ongoing task; (iii) uses a simple visual and textual language; (iv) uses of different types of feedbacks (auditory, visual, positive/negative reinforcement, hints with helpful instructions including math concept definitions, solved math activities using split and easier tasks and, finally, the use of videos/animations that show a solution to the proposed activity); (v) provides information in multiple representation, such as text, video, audio and image for better content and vocabulary understanding in order to stimulate, motivate and engage users to mathematical learning, also helping users to focus on content; (vi) avoids using elements that distract or interfere with focus and attention; (vii) provides clear instructions and orientation about tasks to ease the user understanding of the content and the content language, in order to stimulate, motivate and engage the user; and (viii) uses buttons, familiarly icons and contrast between font and background. Since these children may experience little sensory tolerance and may have an impaired motor skill, besides the user to have the possibility to interact with LEMA through the mouse (point and click with a single button), the user has the possibility to interact with LEMA through Kinect device (using simple gesture moves).Keywords: autism spectrum disorder, digital technologies, inclusion, mathematical abilities, mathematical learning activities
Procedia PDF Downloads 1144336 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.Keywords: politics, personality traits, LIWC, machine learning
Procedia PDF Downloads 4934335 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 4014334 Play-Based Early Education and Teachers’ Professional Development: Impact on Vulnerable Children
Authors: Chirine Dannaoui, Maya Antoun
Abstract:
This paper explores the intricate dynamics of play-based early childhood education (ECE) and the impact of professional development on teachers implementing play-based pedagogy, particularly in the context of vulnerable Syrian refugee children in Lebanon. By utilizing qualitative methodologies, including classroom observations and in-depth interviews with five early childhood educators and a field manager, this study delves into the challenges and transformations experienced by teachers in adopting play-based learning strategies. The research unveils the critical role of continuous and context-specific professional development in empowering teachers to implement play-based pedagogies effectively. When appropriately supported, it emphasizes how such educational approaches significantly enhance children's cognitive, social, and emotional development in crisis-affected environments. Key findings indicate that despite diverse educational backgrounds, teachers show considerable growth in their pedagogical skills through targeted professional development. This growth is vital for fostering a learning environment where vulnerable children can thrive, particularly in humanitarian settings. The paper also addresses educators' challenges, including adapting to play-based methodologies, resource limitations, and balancing curricular requirements with the need for holistic child development. This study contributes to the discourse on early childhood education in crisis contexts, emphasizing the need for sustainable, well-structured professional development programs. It underscores the potential of play-based learning to bridge educational gaps and contribute to the healing process of children facing calamity. The study highlights significant implications for policymakers, educators, schools, and not-for-profit organizations engaged in early childhood education in humanitarian contexts, stressing the importance of investing in teacher capacity and curriculum reform to enhance the quality of education for children in general and vulnerable ones in particular.Keywords: play-based learning, professional development, vulnerable children, early childhood education
Procedia PDF Downloads 574333 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1244332 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 864331 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 135