Search results for: high efficiency video coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25875

Search results for: high efficiency video coding

23055 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 404
23054 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 254
23053 2023 Targets of the Republic of Turkey State Railways

Authors: Hicran Açıkel, Hüseyin Arak, D. Ali Açıkel

Abstract:

Train or high-speed train is a land transportation vehicle, which is safe and offers passengers flight-like comfort while it is preferred for busy lines with respect to passengers. In this study, TCDD’s (Turkish State Railroads Company) targets for the year of 2023, the planned high-speed train lines, improvements, which are considered for the existing lines, and achievability of these targets are examined.

Keywords: train, high-speed train, TCDD, transportation

Procedia PDF Downloads 250
23052 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process

Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud

Abstract:

The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,

Keywords: electrocoagulation, green process, experimental design, optimization

Procedia PDF Downloads 101
23051 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation

Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent

Abstract:

Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.

Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene

Procedia PDF Downloads 209
23050 Simple Modified Method for DNA Isolation from Lyophilised Cassava Storage Roots (Manihot esculenta Crantz.)

Authors: P. K. Telengech, K. Monjero, J. Maling’a, A. Nyende, S. Gichuki

Abstract:

There is need to identify an efficient protocol for use in extraction of high quality DNA for purposes of molecular work. Cassava roots are known for their high starch content, polyphenols and other secondary metabolites which interfere with the quality of the DNA. These factors have negative interference on the various methodologies for DNA extraction. There is need to develop a simple, fast and inexpensive protocol that yields high quality DNA. In this improved Dellaporta method, the storage roots are lyophilized to reduce the water content; the extraction buffer is modified to eliminate the high polyphenols, starch and wax. This simple protocol was compared to other protocols intended for plants with similar secondary metabolites. The method gave high yield (300-950ng) and pure DNA for use in PCR analysis. This improved Dellaporta protocol allows isolation of pure DNA from starchy cassava storage roots.

Keywords: cassava storage roots, dellaporta, DNA extraction, lyophilisation, polyphenols secondary metabolites

Procedia PDF Downloads 368
23049 Improvement of the Calciferous Minerals Floatability through the Application of High-Power Electromagnetic Pulses

Authors: Valentine A. Chanturiya, Igor Zh. Bunin, Maria V. Ryazantseva

Abstract:

The modification of structural and chemical properties of fluorite, scheelite and calcite under the impact of high-power electromagnetic pulses (HPEMP-treatment) were studied with the help of adsorption of acid-base indicators and atomic – force microscopy (AFM). The HPEMP-treatment during the space of 30 seconds resulted in the intensification of fluorite surface the electron-donating ability and acceptor properties of calcite and scheelite surfaces. High-power electromagnetic treatment of the single minerals resulted in the improvement of the calciferous minerals floatability. The rising of the scheelite recovery is 10 – 12%, fluorite – 5 – 6%, calcite – 7 – 8%.

Keywords: calcite, fluorite, scheelite, high power electromagnetic pulses, floatability

Procedia PDF Downloads 292
23048 High Performance of Square GAA SOI MOSFET Using High-k Dielectric with Metal Gate

Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza

Abstract:

Multi-gate SOI MOSFETs has shown better results in subthreshold performances. The replacement of SiO2 by high-k dielectric can fulfill the requirements of Multi-gate MOSFETS with a scaling trend in device dimensions. The advancement in fabrication technology has also boosted the use of different high -k dielectric materials as oxide layer at different places in MOSFET structures. One of the most important multi-gate structures is square GAA SOI MOSFET that is a strong candidate for the next generation nanoscale devices; show an even stronger control of short channel effects. In this paper, GAA SOI MOSFET structure with using high -k dielectrics materials Al2O3 (k~9), HfO2 (k~20), La2O3 (k~30) and metal gate TiN are simulated by using 3-D device simulator DevEdit and Atlas of SILVACO TCAD tools. Square GAA SOI MOSFET transistor with High-k HfO2 gate dielectrics and TiN metal gate exhibits significant improvements performances compared to Al2O3 and La2O3 dielectrics for the same structure. Simulation results of GAA SOI MOSFET transistor with HfO2 dielectric show the increase in saturation current and Ion/Ioff ratio while leakage current, subthreshold slope and DIBL effect are decreased.

Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, square GAA SOI MOSFET, high-k dielectric, Silvaco software

Procedia PDF Downloads 265
23047 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction

Authors: Sol Girouard, Zona Kostic

Abstract:

A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.

Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training

Procedia PDF Downloads 280
23046 Nanotechnology as a Futuristic Approach to Architecture with Special Reference to Chandigarh

Authors: Chaudhary Archana, Dhingra Poshika

Abstract:

The architecture of the world is at a crossroads with the advent of new technology. The issues of energy efficiency and global warming are getting important with the coming times. New technologies are making their mark. For the architecture profession, nanotechnology will greatly impact construction materials and their properties. Nanotechnology, the understanding and control of matter at a scale of one to one hundred billions of a meter, is bringing incredible changes to the materials and processes of buildings. Materials will behave in many different ways as we are able to more precisely control their properties at the nanoscale. It is precisely called the next industrial revolution. We live in an age where scientific progress continues to transform human lifestyle. This is evermore true when it comes to the progress being made in the field of nanotechnology. This science stands to change and advance the practice of design in a multitude of ways – where architectural progress is being made at the molecular level. The nanotechnology has already been adopted in various buildings across the world. What an impact it shall have on the futuristic architecture in Chandigarh, India shall be discussed in the paper. But before we hurtle off toward a nano-utopia, we need to step back and ask ourselves whether this is a direction in which we really want to go.

Keywords: building materials, energy efficiency, nanotechnology, sustainability

Procedia PDF Downloads 462
23045 Influence of Reinforcement Stiffness on the Performance of Back-to-Back Reinforced Earth Wall upon Rainwater Infiltration

Authors: Gopika Rajagopal, Sudheesh Thiyyakkandi

Abstract:

Back-to-back reinforced earth (RE) walls are extensively used in these days as bridge abutments and highway ramps, owing to their cost efficiency and ease of construction. High quality select fill is the most suitable backfill material due to its excellent engineering properties and constructability. However, industries are compelled to use low quality, locally available soil because of its ample availability on site. However, several failure cases of such walls are reported, especially subsequent to rainfall events. The stiffness of reinforcement is one of the major factors affecting the performance of RE walls. The present study focused on analyzing the effect of reinforcement stiffness on the performance of complete select fill, complete marginal fill, and hybrid-fill (i.e., combination of select and marginal fills) back-to-back RE walls, immediately after construction and upon rainwater infiltration through finite element modelling. A constant width to height (W/H) ratio of 3 and height (H) of 6 m was considered for the numerical analysis and the stiffness of reinforcement layers was varied from 500 kN/m to 10000 kN/m. Results showed that reinforcement stiffness had a noticeable influence on the response of RE wall, subsequent to construction as well as rainwater infiltration. Facing displacement was found to decrease and maximum reinforcement tension and factor of safety were observed to increase with increasing the stiffness of reinforcement. However, beyond a stiffness of 5000 kN/m, no significant reduction in facing displacement was observed. The behavior of fully marginal fill wall considered in this study was found to be reasonable even after rainwater infiltration when the high stiffness reinforcement layers are used.

Keywords: back-to-back reinforced earth wall, finite element modelling, rainwater infiltration, reinforcement stiffness

Procedia PDF Downloads 157
23044 Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator

Authors: Adrian Garrido Sanchis, Richard Pashley

Abstract:

The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L).

Keywords: MS2 virus inactivation, water reuse, hot bubble column evaporator, water treatment

Procedia PDF Downloads 214
23043 Single Ended Primary Inductance Converter with Internal Model Controller

Authors: Fatih Suleyman Taskincan, Ahmet Karaarslan

Abstract:

In this article, the study and analysis of Single Ended Primary Inductance Converter (SEPIC) are presented for battery charging applications that will be used in military applications. The usage of this kind of converters come from its advantage of non-reverse polarity at outputs. As capacitors charge and discharge through inductance, peak current does not occur on capacitors. Therefore, the efficiency will be high compared to buck-boost converters. In this study, the converter (SEPIC) is designed to be operated with Internal Model Controller (IMC). The traditional controllers like Proportional Integral Controller are not preferred as its linearity behavior. Hence IMC is designed for this converter. This controller is a model-based control and provides more robustness and better set point monitoring. Moreover, it can be used for an unstable process where the conventional controller cannot handle the dynamic operation. Matlab/Simulink environment is used to simulate the converter and its controller, then, the results are shown and discussed.

Keywords: DC/DC converter, single ended primary inductance converter, SEPIC, internal model controller, IMC, switched mode power supply

Procedia PDF Downloads 635
23042 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries

Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu

Abstract:

Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.

Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure

Procedia PDF Downloads 142
23041 Numerical and Experimental Investigation of Distance Between Fan and Coil Block in a Fin and Tube Air Cooler Heat Exchanger

Authors: Feyza Şahi̇n, Harun Deni̇zli̇, Mustafa Zabun, Hüseyi̇n OnbaşIoğli

Abstract:

Heat exchangers are devices that are widely used to transfer heat between fluids due to their temperature differences. As a type of heat exchanger, air coolers are heat exchangers that cool the air as it passes through the fins of the heat exchanger by transferring heat to the refrigerant in the coil tubes of the heat exchanger. An assembled fin and tube heat exchanger consists of a coil block and a casing with a fan mounted on it. The term “Fan hood” is used to define the distance between the fan and the coil block. Air coolers play a crucial role in cooling systems, and their heat transfer performance can vary depending on design parameters. These parameters can be related to the air side or the internal fluid side. For airside efficiency, the distance between the fan and the coil block affects the performance by creating dead zones at the corners of the casing and maldistribution of airflow. Therefore, a detailed study of the effect of the fan hood on the evaporator and the optimum fan hood distance is necessary for an efficient air cooler design. This study aims to investigate the value of the fan hood in a fin and tube-type air cooler heat exchanger through computational fluid dynamics (CFD) simulations and experimental investigations. CFD simulations will be used to study the airflow within the fan hood. These simulations will provide valuable insights to optimize the design of the fan hood. In addition, experimental tests will be carried out to validate the CFD results and to measure the performance of the fan hood under real conditions. The results will help us to understand the effect of fan hood design on evaporator efficiency and contribute to the development of more efficient cooling systems. This study will provide essential information for evaporator design and improving the energy efficiency of cooling systems.

Keywords: heat exchanger, fan hood, heat exchanger performance, air flow performance

Procedia PDF Downloads 81
23040 Efficacy of DAPG Producing Fluorescent Pseudomonas for Enhancing Nutrient Use Efficacy, Bio-Control of Soil-Borne Diseases and Yield of Groundnut

Authors: Basavaraj Yenagi, P. Nagaraju, C. R. Patil

Abstract:

Groundnut (Arachis hypohaea L.) is called as “King of oilseeds” and one of the most important food and cash crops in Indian subcontinent. Yield and quality of oil are negatively correlated with poor or imbalanced nutrition and constant exposure to both biotic and abiotic stress factors. Variety of diseases affect groundnut plant, most of them are caused by fungi and lead to severe yield loss. Imbalanced nutrition increases the concerns of environmental deterioration which includes soil fertility. Among different microbial antagonists, Pseudomonas is common member of the plant growth promoting rhizobacteria microflora present in the rhizosphere of groundnut. These are known to produce a beneficial effect on groundnut due to their high metabolic activity leading to the production of enzymes, exopolysaccharides, secondary metabolites, and antibiotics. The ability of pseudomonas lies on their ability to produce antibiotic metabolites such as 2, 4-diacetylphloroglucinol (DAPG). DAPG can inhibit the growth of fungal pathogens namely collar rot and stem rot and also increase the availability of plant nutrients through increased solubilization and uptake of nutrients. Hence, the present study was conducted for three consecutive years (2014 to 2016) in vertisol during the rainy season to assess the efficacy of DAPG producing fluorescent pseudomonas for enhancing nutrient use efficacy, bio-control of soil-borne diseases and yield of groundnut at University of Agricultural Sciences, Dharwad farm. The experiment was laid out in an RCBD with three replications and seven treatments. The mean of three years data revealed that the effect of DAPG-producing producing fluorescent pseudomonas enhanced groundnut yield, uptake of nitrogen and phosphorus and nutrient use efficiency and also found to be effective in bio-control of collar rot and stem rot incidence leading to increase pod yield of groundnut. Higher dry pod yield of groundnut was obtained with DAPG 2(3535 kg ha-1) closely followed by DAPG 4(3492 kg ha-1), FP 98(3443 kg ha-1), DAPG 1(3414 kg ha-1), FP 86(3361 kg ha-1) and Trichoderma spp. (3380 kg ha-1) over control(3173 kg ha-1). A similar trend was obtained with other growth and yield attributing parameters. N uptake ranged from 8.21 percent to FP 86 to 17.91 percent with DAPG 2 and P uptake ranged between 5.56 percent with FP 86 to 16.67 percent with DAPG 2 over control. The first year, there was no incidence of collar rot. During the second year, the control plot recorded 2.51 percent incidence and it ranged from 0.82 percent to 1.43 percent in different DAPG-producing fluorescent pseudomonas treatments. The similar trend was noticed in the third year with lower incidence. The stem rot incidence was recorded during all the three years. Mean data indicated that the control plot recorded 2.65 percent incidence and it ranged from 0.71 percent to 1.23 percent in different DAPG-producing fluorescent pseudomonas treatments. The increase in net monetary benefits ranged from Rs.5975 ha-1 to Rs.11407 ha 1 in different treatments. Hence, as a low-cost technology, seed treatment with available DAPG-producing fluorescent pseudomonas has a beneficial effect on groundnut for enhancing groundnut yield, nutrient use efficiency and bio-control of soil-borne diseases.

Keywords: groundnut, DAPG, fluorescent pseudomonas, nutrient use efficiency, collar rot, stem rot

Procedia PDF Downloads 184
23039 Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation

Authors: Chenxi Zhang, Weizhong Qian, Fei Wei

Abstract:

Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.2Keywords: bubbles, Strouhal number, two-phase flow, energy dissipation

Procedia PDF Downloads 249
23038 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 200
23037 Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds

Authors: Sylvain Caillol, Ghislain David

Abstract:

Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity properties

Keywords: phenolic resins, formaldehyde-free, vanillin, bio-based, non-toxic

Procedia PDF Downloads 275
23036 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 140
23035 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 591
23034 Characterization Techniques for Studying Properties of Nanomaterials

Authors: Nandini Sharma

Abstract:

Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.

Keywords: characterization, structural, optical, nanomaterial

Procedia PDF Downloads 151
23033 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 247
23032 The Role of Virtual Group Anonymity in the Generation, Selection, and Refinement of Ideas

Authors: Jonali Baruah, Keesha Green

Abstract:

This experimental study examines the effects of anonymity in video meeting groups across the stages of innovation (idea generation, selection, and refinement) on various measures of creativity. A sample of 92 undergraduate students participated in small groups of three to four members to complete creativity, decision-making, and idea-refinement task in either anonymous or identified conditions. The study followed two anonymity (anonymous and identified) X 3 stages of innovation (idea generation, idea selection, and idea refinement) in a mixed factorial design. Results revealed that the anonymous groups produced ideas of the highest average quality in the refinement phase of innovation. The results of this study enhanced our understanding of the productivity and creativity of groups in computer-mediated communication.

Keywords: creativity, anonymity, idea-generation, idea-refinement, innovation

Procedia PDF Downloads 144
23031 Consumer Behavior and Attitudes of Green Advertising: A Collaborative Study with Three Companies to Educate Consumers

Authors: Mokhlisur Rahman

Abstract:

Consumers' understanding of the products depends on what levels of information the advertisement contains. Consumers' attitudes vary widely depending on factors such as their level of environmental awareness, their perception of the company's motives, and the perceived effectiveness of the advertising campaign. Considering the growing eco-consciousness among consumers and their concern for the environment, strategies for green advertising have become equally significant for companies to attract new consumers. It is important to understand consumers' habits of purchasing, knowledge, and attitudes regarding eco-friendly products depending on promotion because of the limitless options of the products in the market. Additionally, encouraging consumers to buy sustainable products requires a platform that can message the world that being a stakeholder in sustainability is possible if consumers show eco-friendly behavior on a larger scale. Social media platforms provide an excellent atmosphere to promote companies' sustainable efforts to be connected engagingly with their potential consumers. The unique strategies of green advertising use techniques to carry information and rewards for the consumers. This study aims to understand the consumer behavior and effectiveness of green advertising by experimenting in collaboration with three companies in promoting their eco-friendly products using green designs on the products. The experiment uses three sustainable personalized offerings, Nike shoes, H&M t-shirts, and Patagonia school bags. The experiment uses a pretest and posttest design. 300 randomly selected participants take part in this experiment and survey through Facebook, Twitter, and Instagram. Nike, H&M, and Patagonia share the post of the experiment on their social media homepages with a video advertisement for the three products. The consumers participate in a pre-experiment online survey before making a purchase decision to assess their attitudes and behavior toward eco-friendly products. The audio-only feature explains the product's information, like their use of recycled materials, their manufacturing methods, sustainable packaging, and their impact on the environment during the purchase while the consumer watches the product video. After making a purchase, consumers take a post-experiment survey to know their perception and behavior toward eco-friendly products. For the data analysis, descriptive statistical tools mean, standard deviation, and frequencies measure the pre- and post-experiment survey data. The inferential statistical tool paired sample t-test measures the difference in consumers' behavior and attitudes between pre-purchase and post-experiment survey results. This experiment provides consumers ample time to consider many aspects rather than impulses. This research provides valuable insights into how companies can adopt sustainable and eco-friendly products. The result set a target for the companies to achieve a sustainable production goal that ultimately supports companies' profit-making and promotes consumers' well-being. This empowers consumers to make informed choices about the products they purchase and support their companies of interest.

Keywords: green-advertising, sustainability, consumer-behavior, social media

Procedia PDF Downloads 92
23030 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning

Authors: Samina Khalid, Shamila Nasreen

Abstract:

Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.

Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA

Procedia PDF Downloads 504
23029 Sustainability Performance in the Post-Pandemic Era: Employee Resilience Impact on Improving Employee and Organizational Performance

Authors: Sonali Mohite

Abstract:

Severe changes to Organizational Sustainability (OS) have been brought about by the COVID-19 pandemic. This situation forces organizations to tackle the competencies required to augment Employee Resilience (ER) and make profitable growth. This study explores how employee resilience contributes to both individual and organizational success in the wake of the COVID-19 pandemic. We suggest that employees who possess strong coping mechanisms and adaptability are better equipped to handle ongoing disruptions, resulting in improved individual performance metrics like productivity, engagement, and innovative thinking. Hence, exploring the efficiency of ER in improving EP and OS in post-pandemic (PP) is the aim of this research. By utilizing convenience sampling techniques, a total of 422 employees have been collected from numerous organizations. After that, the study’s hypothesis is analysed by using Structural Equation Modelling (SEM). As per the study’s findings, the ER factors of “Job Satisfaction (JS)”, “Self-Efficacy (SE)”, “Supervisors’ Support (SS)”, and “Facilitating Conditions (FC)” have positive and significant associations with organizational efficiency. Furthermore, the study’s findings also exhibited that there is the most important relation between SE and EOP.

Keywords: employee resilience, employee performance, organizational performance, sustainability, post-pandemic

Procedia PDF Downloads 32
23028 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks

Procedia PDF Downloads 354
23027 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 241
23026 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir

Authors: Sukruthai Sapniwat, Falan Srisuriyachai

Abstract:

Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.

Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation

Procedia PDF Downloads 336