Search results for: the health belief model
21982 A Pedagogical Study of Computational Design in a Simulated Building Information Modeling-Cloud Environment
Authors: Jaehwan Jung, Sung-Ah Kim
Abstract:
Building Information Modeling (BIM) provides project stakeholders with various information about property and geometry of entire component as a 3D object-based parametric building model. BIM represents a set of Information and solutions that are expected to improve collaborative work process and quality of the building design. To improve collaboration among project participants, the BIM model should provide the necessary information to remote participants in real time and manage the information in the process. The purpose of this paper is to propose a process model that can apply effective architectural design collaborative work process in architectural design education in BIM-Cloud environment.Keywords: BIM, cloud computing, collaborative design, digital design education
Procedia PDF Downloads 43421981 LORA: A Learning Outcome Modelling Approach for Higher Education
Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga
Abstract:
To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling
Procedia PDF Downloads 18721980 Comparison of Nitrogen Dioxide Pollution for Different Commuting Modes in Kaunas
Authors: A. Dėdelė, A. Miškinytė
Abstract:
The assessment of air pollution exposure in different microenvironments is important for better understanding the relationship between health effects caused by air pollution. The recent researches revealed that the level of air pollution in transport microenvironment contributes considerably to the total exposure of air pollution. The aim of the study was to determine air pollution of nitrogen dioxide and to assess the exposure of NO2 dependence on the chosen commuting mode using a global positioning system (GPS). The same travel destination was chosen and 30 rides in three different commuting modes: cycling, walking, and public transport were made. Every different mean of transport is associated with different route. GPS device and travel diary data were used to track all routes of different commuting modes. Air pollution of nitrogen dioxide was determined using the ADMS-Urban dispersion model. The average annual concentration of nitrogen dioxide was modeled for 2011 year in Kaunas city. The geographical information systems were used to visualize the travel routes, to create maps indicating the route of different commuting modes and to combine modelled nitrogen dioxide data. The results showed that there is a significant difference between the selected commuting mode and the exposure of nitrogen dioxide. The concentrations in the microenvironments were 22.4 μg/m3, 21.4 μg/m3, and 25.9 μg/m3 for cycling, walking and public transport respectively. Of all the modes of commuting, the highest average exposure of nitrogen dioxide was found travelling by public transport, while the lowest average concentration of NO2 was determined by walking.Keywords: nitrogen dioxide, dispersion model, commuting mode, GPS
Procedia PDF Downloads 43221979 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 27221978 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database
Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan
Abstract:
Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database
Procedia PDF Downloads 57621977 A Case Study of the Political Determinant of Health on the Public Health Crisis of Malaria in Nigeria
Authors: Bisola Olumegbon
Abstract:
Globally, there were about 229 million cases of malaria in 2022. The sub-Saharan African region accounted for 92% of the reported cases and 94% of deaths. Nigeria had the highest number of malaria cases and deaths, representing 27% of global cases. This scholarly project was a case study guided by the political determinants of health. Triangulation of data using thematic analysis was used to identify the political determinants of malaria in Nigeria and to understand how the concept of interaction contributes to the persistence of the disease. The analysis involved a deductive and inductive approach based on the literature review and the evidence of political determinants gathered in the data. Participants’ in-depth interviews were used to collect data from frontline personnel. Data triangulation was done using thematic analysis, a method used to identify patterns and themes in qualitative data. The study findings revealed a correlation between political determinants of health and malaria management efforts in Nigeria. Some influencing factors included voting challenges, inadequate funding, lack of health priority from the government, noncompliance among patients, and hurdles to effective communication. The findings suggest a need to deliberately increase dedication to the political agenda, provide sufficient financial resources, enhance communication, and active community involvement to address the persistent malaria endemic effectively. Further study is recommended to identify interventions to address identified factors of political determinants of health to reduce malaria in Nigeria. Such intervention must involve collaboration with diverse stakeholders such as policymakers, healthcare professionals, community leaders, and researchers.Keywords: malaria, malaria management, health worker, stakeholders, political determinant of health
Procedia PDF Downloads 7121976 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm
Procedia PDF Downloads 44521975 Comparison of Air Quality in 2019 and 2020 in the Campuses of the University of the Basque Country
Authors: Elisabete Alberdi, Irantzu Álvarez, Nerea Astigarraga, Heber Hernández
Abstract:
The purpose of this research work is to study the emissions of certain substances that contribute to air pollution and, as far as possible, to try to eliminate or reduce them, to avoid damage to both health and the environment. This work focuses on analyzing and comparing air quality in 2019 and 2020 in the Autonomous Community of the Basque Country, especially near the UPV/EHU campuses. We use Geostatistics to develop a spatial model and to analyse the levels of pollutants in those areas where the scope of the monitoring stations is limited. Finally, different more sustainable transport alternatives for users have been proposed.Keywords: air quality, pollutants, monitoring stations, environment, geostatistics
Procedia PDF Downloads 17321974 Modeling the Impacts of Road Construction on Lands Values
Authors: Maha Almumaiz, Harry Evdorides
Abstract:
Change in land value typically occurs when a new interurban road construction causes an increase in accessibility; this change in the adjacent lands values differs according to land characteristics such as geographic location, land use type, land area and sale time (appraisal time). A multiple regression model is obtained to predict the percent change in land value (CLV) based on four independent variables namely land distance from the constructed road, area of land, nature of land use and time from the works completion of the road. The random values of percent change in land value were generated using Microsoft Excel with a range of up to 35%. The trend of change in land value with the four independent variables was determined from the literature references. The statistical analysis and model building process has been made by using the IBM SPSS V23 software. The Regression model suggests, for lands that are located within 3 miles as the straight distance from the road, the percent CLV is between (0-35%) which is depending on many factors including distance from the constructed road, land use, land area and time from works completion of the new road.Keywords: interurban road, land use types, new road construction, percent CLV, regression model
Procedia PDF Downloads 26621973 A Concept Analysis of Self-Efficacy for Cancer Pain Management
Authors: Yi-Fung Lin, Yuan-Mei Liao
Abstract:
Background: Pain is common among patients with cancer and is also one of the most disturbing symptoms. As this suffering is subjective, if patients proactively participate in their pain self-management, pain could be alleviated effectively. However, not everyone can carry out self-management very well because human behavior is a product of the cognition process. In this process, we can see that "self-efficacy" plays an essential role in affecting human behaviors. Methods: We used the eight steps of concept analysis proposed by Walker and Avant to clarify the concept of “self-efficacy for cancer pain management.” A comprehensive literature review was conducted for relevant publications that were published during the period of 1977 to 2021. We used several keywords, including self-efficacy, self-management, concept analysis, conceptual framework, and cancer pain, to search the following databases: PubMed, CINAHL, Web of Science, and Embase. Results: We identified three defining attributes for the concept of self-efficacy for cancer pain management, including pain management abilities, confidence, and continuous pain monitoring, and recognized six skills related to pain management abilities: problem-solving, decision-making, resource utilization, forming partnerships between medical professionals and patients, planning actions, and self-regulation. Five antecedents for the concept of self-efficacy for cancer pain management were identified: pain experience, existing cancer pain, pain-related knowledge, a belief in pain management, and physical/mental state. Consequences related to self-efficacy for cancer pain management were achievement of pain self-management, well pain control, satisfying quality of life, and containing motivation. Conclusions: This analysis provides researchers with a clearer understanding of the concept of “self-efficacy for cancer pain management.” The findings presented here provide a foundation for future research and nursing interventions to enhance self-efficacy for cancer pain management.Keywords: cancer pain, concept analysis, self-efficacy, self-management
Procedia PDF Downloads 7021972 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 1021971 Modeling the Effects of Temperature on Air Pollutant Concentration
Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson
Abstract:
Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO2) – as a model air pollutant. The research uses AERMOD model to predict the SO2 dispersion trends on the surrounding area. Emissions from five (5) industrial stacks, on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1oC, + 3oC and + 5oC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO2 at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO2 concentration levels. The average increase of SO2 levels were 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.Keywords: air quality, sulphur dioxide, global warming, air dispersion model
Procedia PDF Downloads 13121970 Behavioral Stages of Change in Calorie Balanced Dietary Intake; Effects of Decisional Balance and Self–Efficacy in Obese and Overweight Women
Authors: Abdmohammad Mousavi, Mohsen Shams, Mehdi Akbartabar Toori, Ali Mousavizadeh, Mohammad Ali Morowatisharifabad
Abstract:
Introduction: The effectiveness of Transtheoretical Model constructs on dietary behavior change has been subject to questions by some studies. The objective of this study was to determine the relationship between self–efficacy and decisional balance as mediator variables and transfer obese and overweight women among the stages of behavior change of calorie balanced dietary intake. Method: In this cross-sectional study, 448 obese and overweight 20-44 years old women were selected from three health centers in Yasuj, a city in south west of Iran. Anthropometric data were measured using standard techniques. Demographic, stages of change, self-efficacy and decisional balance data were collected by questionnaires and analyzed using One–Way ANOVA and Generalized Linear Models tests. Results: Demographic and anthropometric variables were not different significantly in different stages of change related to calorie intake except the pre-high school level of education (P=.047, OR=502, 95% CI= .255 ~ .990). Mean scores of Self-efficacy ( F(4.425)= 27.09, P= .000), decisional balance (F(4.394), P= .004), and pros (F(4.430)=5.33, P=000) were different significantly in five stages of change. However, the cons did not show a significant change in this regard (F(4.400)=1.83, P=.123). Discussion: Women movement through the stages of changes for calorie intake behavior can be predicted by self efficacy, decisional balance and pros.Keywords: transtheoretical model, stages of change, self efficacy, decisional balance, calorie intake, women
Procedia PDF Downloads 42821969 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells
Authors: Jiahui Song
Abstract:
In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.Keywords: model, high-intensity, nanosecond, bioelectrics
Procedia PDF Downloads 22521968 Navigating through Organizational Change: TAM-Based Manual for Digital Skills and Safety Transitions
Authors: Margarida Porfírio Tomás, Paula Pereira, José Palma Oliveira
Abstract:
Robotic grasping is advancing rapidly, but transferring techniques from rigid to deformable objects remains a challenge. Deformable and flexible items, such as food containers, demand nuanced handling due to their changing shapes. Bridging this gap is crucial for applications in food processing, surgical robotics, and household assistance. AGILEHAND, a Horizon project, focuses on developing advanced technologies for sorting, handling, and packaging soft and deformable products autonomously. These technologies serve as strategic tools to enhance flexibility, agility, and reconfigurability within the production and logistics systems of European manufacturing companies. Key components include intelligent detection, self-adaptive handling, efficient sorting, and agile, rapid reconfiguration. The overarching goal is to optimize work environments and equipment, ensuring both efficiency and safety. As new technologies emerge in the food industry, there will be some implications, such as labour force, safety problems and acceptance of the new technologies. To overcome these implications, AGILEHAND emphasizes the integration of social sciences and humanities, for example, the application of the Technology Acceptance Model (TAM). The project aims to create a change management manual, that will outline strategies for developing digital skills and managing health and safety transitions. It will also provide best practices and models for organizational change. Additionally, AGILEHAND will design effective training programs to enhance employee skills and knowledge. This information will be obtained through a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. The project will explore how organizations adapt during periods of change and identify factors influencing employee motivation and job satisfaction. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND).Keywords: change management, technology acceptance model, organizational change, health and safety
Procedia PDF Downloads 4521967 The Log S-fbm Nested Factor Model
Authors: Othmane Zarhali, Cécilia Aubrun, Emmanuel Bacry, Jean-Philippe Bouchaud, Jean-François Muzy
Abstract:
The Nested factor model was introduced by Bouchaud and al., where the asset return fluctuations are explained by common factors representing the market economic sectors and residuals (noises) sharing with the factors a common dominant volatility mode in addition to the idiosyncratic mode proper to each residual. This construction infers that the factors-residuals log volatilities are correlated. Here, we consider the case of a single factor where the only dominant common mode is a S-fbm process (introduced by Peng, Bacry and Muzy) with Hurst exponent H around 0.11 and the residuals having in addition to the previous common mode idiosyncratic components with Hurst exponents H around 0. The reason for considering this configuration is twofold: preserve the Nested factor model’s characteristics introduced by Bouchaud and al. and propose a framework through which the stylized fact reported by Peng and al. is reproduced, where it has been observed that the Hurst exponents of stock indices are large as compared to those of individual stocks. In this work, we show that the Log S-fbm Nested factor model’s construction leads to a Hurst exponent of single stocks being the ones of the idiosyncratic volatility modes and the Hurst exponent of the index being the one of the common volatility modes. Furthermore, we propose a statistical procedure to estimate the Hurst factor exponent from the stock returns dynamics together with theoretical guarantees, with good results in the limit where the number of stocks N goes to infinity. Last but not least, we show that the factor can be seen as an index constructed from the single stocks weighted by specific coefficients.Keywords: hurst exponent, log S-fbm model, nested factor model, small intermittency approximation
Procedia PDF Downloads 4921966 Breakfast Skipping and Health Status Among University Professionals in Bangladesh
Authors: Shatabdi Goon
Abstract:
OBJECTIVE: To determine the prevalence and associations between breakfast skipping and health status for university professionals in Bangladesh. DESIGN: A cross-sectional descriptive study design was performed using information on respondent’s sociodemographic status and eating behavior. Factors associated with breakfast skipping were identified using multivariate regression models. SETTINGS: Data obtained from a representative sample (n 120) of university professionals randomly selected from two distinct universities in Dhaka city, Bangladesh. SUBJECT: A total number of one hundred and twenty university professionals with a mean age of 29 years. RESULT: Results indicated that approximately 35.8% of the sample skipped breakfast. Gender was the only statistically significant sociodemographic variable, with females skipping at over two times the rate of males (OR 95% CI: 1.9; 0.90-4.13). The reasons given for skipping breakfast were almost exclusively habit (39.5%), work pressure (23.2%) and lack of time (16.2%). Skippers were significantly more likely to be obese (OR 2.4; 95% CI 1.02- 5.7), less energetic (OR 3.5; 95% CI 1.5-8.6), associated with health problems (OR 4.3; 95% CI 1.8- 10.17) and eating tendency of fast food (OR 2.5; 95% CI 1.13 - 5.5). Gastric and heart burn (X2=4.19, p<0.05) and high blood pressure (X2=5.027, p<0.05) were detected among 34.9% and 27.9 % of those employees respectively identified as breakfast skippers and they showed significantly high prevalence. CONCLUSION: Breakfast skipping is highly prevalent among university professionals with significant association of different health problems in Bangladesh. Health promotion strategies should be used to encourage all adults to eat breakfast regularly.Keywords: breakfast, healthy lifestyle, breakfast skipping, health status, university professionals
Procedia PDF Downloads 34721965 The Effects of Quality of Web-Based Applications on Competitive Advantage: An Empirical Study in Commercial Banks in Jordan
Authors: Faisal Asad Aburub
Abstract:
Many organizations are investing in web applications and technologies in order to be competitive, some of them could not achieve its goals. The quality of web-based applications could play an important role for organizations to be competitive. So the aim of this study is to investigate the impact of quality of web-based applications to achieve a competitive advantage. A new model has been developed. An empirical investigation was performed on a banking sector in Jordan to test the new model. The results show that impact of web-based applications on competitive advantage is significant. Finally, further work is planned to validate and evaluate the proposed model using several domains.Keywords: competitive advantage, web-based applications, empirical investigation, commercial banks in Jordan
Procedia PDF Downloads 33921964 From Cascade to Cluster School Model of Teachers’ Professional Development Training Programme: Nigerian Experience, Ondo State: A Case Study
Authors: Oloruntegbe Kunle Oke, Alake Ese Monica, Odutuyi Olubu Musili
Abstract:
This research explores the differing effectiveness of cascade and cluster models in professional development programs for educators in Ondo State, Nigeria. The cascade model emphasizes a top-down approach, where training is cascaded from expert trainers to lower levels of teachers. In contrast, the cluster model, a bottom-up approach, fosters collaborative learning among teachers within specific clusters. Through a review of the literature and empirical studies of the implementations of the former in two academic sessions followed by the cluster model in another two, the study examined their effectiveness on teacher development, productivity and students’ achievements. The study also drew a comparative analysis of the strengths and weaknesses associated with each model, considering factors such as scalability, cost-effectiveness, adaptability in various contexts, and sustainability. 2500 teachers from Ondo State Primary Schools participated in the cascade with intensive training in five zones for a week each in two academic sessions. On the other hand, 1,980 and 1,663 teachers in 52 and 34 clusters, respectively, were in the first and the following session. The programs were designed for one week of rigorous training of teachers by facilitators in the former while the latter was made up of four components: sit-in-observation, need-based assessment workshop, pre-cluster and the actual cluster meetings in addition to sensitization, and took place one day a week for ten weeks. Validated Cluster Impact Survey Instruments, CISI and Teacher’s Assessment Questionnaire (TAQ) were administered to ascertain the effectiveness of the models during and after implementation. The findings from the literature detailed specific effectiveness, strengths and limitations of each approach, especially the potential for inconsistencies and resistance to change. Findings from the data collected revealed the superiority of the cluster model. Response to TAQ equally showed content knowledge and skill update in both but were more sustained in the cluster model. Overall, the study contributes to the ongoing discourse on effective strategies for improving teacher training and enhancing student outcomes, offering practical recommendations for the development and implementation of future professional development projects.Keywords: cascade model, cluster model, teachers’ development, productivity, students’ achievement
Procedia PDF Downloads 4121963 Supply Chain Optimisation through Geographical Network Modeling
Authors: Cyrillus Prabandana
Abstract:
Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain
Procedia PDF Downloads 34621962 Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow
Authors: Shu-Yang Zhang, Shun-Qi Zhang, Zhan-Xi Wang, Xian-Sheng Qin
Abstract:
Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely.Keywords: piezoelectric smart structures, aerodynamic, geometric nonlinearity, finite element analysis
Procedia PDF Downloads 38921961 Transferring Data from Glucometer to Mobile Device via Bluetooth with Arduino Technology
Authors: Tolga Hayit, Ucman Ergun, Ugur Fidan
Abstract:
Being healthy is undoubtedly an indispensable necessity for human life. With technological improvements, in the literature, various health monitoring and imaging systems have been developed to satisfy your health needs. In this context, the work of monitoring and recording the data of individual health monitoring data via wireless technology is also being part of these studies. Nowadays, mobile devices which are located in almost every house and which become indispensable of our life and have wireless technology infrastructure have an important place of making follow-up health everywhere and every time because these devices were using in the health monitoring systems. In this study, Arduino an open-source microcontroller card was used in which a sample sugar measuring device was connected in series. In this way, the glucose data (glucose ratio, time) obtained with the glucometer is transferred to the mobile device based on the Android operating system with the Bluetooth technology channel. A mobile application was developed using the Apache Cordova framework for listing data, presenting graphically and reading data over Arduino. Apache Cordova, HTML, Javascript and CSS are used in coding section. The data received from the glucometer is stored in the local database of the mobile device. It is intended that people can transfer their measurements to their mobile device by using wireless technology and access the graphical representations of their data. In this context, the aim of the study is to be able to perform health monitoring by using different wireless technologies in mobile devices that can respond to different wireless technologies at present. Thus, that will contribute the other works done in this area.Keywords: Arduino, Bluetooth, glucose measurement, mobile health monitoring
Procedia PDF Downloads 32221960 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading
Authors: Yoshinori Kitsutaka, Fumiya Ikedo
Abstract:
In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.Keywords: gypsum board, anchor, shear test, cyclic loading, load-unload curve
Procedia PDF Downloads 38721959 A New Study on Mathematical Modelling of COVID-19 with Caputo Fractional Derivative
Authors: Sadia Arshad
Abstract:
The new coronavirus disease or COVID-19 still poses an alarming situation around the world. Modeling based on the derivative of fractional order is relatively important to capture real-world problems and to analyze the realistic situation of the proposed model. Weproposed a mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework. The new model is formulated in the Caputo sense and employs a nonlinear time-varying transmission rate. The existence and uniqueness solutions of the fractional order derivative have been studied using the fixed-point theory. The associated dynamical behaviors are discussed in terms of equilibrium, stability, and basic reproduction number. For the purpose of numerical implementation, an effcient approximation scheme is also employed to solve the fractional COVID-19 model. Numerical simulations are reported for various fractional orders, and simulation results are compared with a real case of COVID-19 pandemic. According to the comparative results with real data, we find the best value of fractional orderand justify the use of the fractional concept in the mathematical modelling, for the new fractional modelsimulates the reality more accurately than the other classical frameworks.Keywords: fractional calculus, modeling, stability, numerical solution
Procedia PDF Downloads 11121958 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 13421957 Growth of Algal Biomass in Laboratory and in Pilot-Scale Algal Photobioreactors in the Temperate Climate of Southern Ireland
Authors: Linda A. O’Higgins, Astrid Wingler, Jorge Oliveira
Abstract:
The growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1 L) and compared to batch growth in sunlit modules (5–25 L) of the commercial Phytobag photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of a 10m2 pilot-scale photobioreactor, Phytobag (10,000 L). The analysis confirmed light limitation in all three photobioreactors. An additional limitation of biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.Keywords: microalgae, batch cultivation, Chlorella vulgaris, Mathematical model, photobioreactor, scale-up
Procedia PDF Downloads 11621956 Challenges to Quality Primary Health Care in Saudi Arabia and Potential Improvements Implemented by Other Systems
Authors: Hilal Al Shamsi, Abdullah Almutairi
Abstract:
Introduction: As primary healthcare centres play an important role in implementing Saudi Arabia’s health strategy, this paper offers a review of publications on the quality of the country’s primary health care. With the aim of deciding on solutions for improvement, it provides an overview of healthcare quality in this context and indicates barriers to quality. Method: Using two databases, ProQuest and Scopus, data extracted from published articles were systematically analysed for determining the care quality in Saudi primary health centres and obstacles to achieving higher quality. Results: Twenty-six articles met the criteria for inclusion in this review. The components of healthcare quality were examined in terms of the access to and effectiveness of interpersonal and clinical care. Good access and effective care were identified in such areas as maternal health care and the control of epidemic diseases, whereas poor access and effectiveness of care were shown for chronic disease management programmes, referral patterns (in terms of referral letters and feedback reports), health education and interpersonal care (in terms of language barriers). Several factors were identified as barriers to high-quality care. These included problems with evidence-based practice implementation, professional development, the use of referrals to secondary care and organisational culture. Successful improvements have been implemented by other systems, such as mobile medical units, electronic referrals, online translation tools and mobile devices and their applications; these can be implemented in Saudi Arabia for improving the quality of the primary healthcare system in this country. Conclusion: The quality of primary health care in Saudi Arabia varies among the different services. To improve quality, management programmes and organisational culture must be promoted in primary health care. Professional development strategies are also needed for improving the skills and knowledge of healthcare professionals. Potential improvements can be implemented to improve the quality of the primary health system.Keywords: quality, primary health care, Saudi Arabia, health centres, general medical
Procedia PDF Downloads 19321955 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model
Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee
Abstract:
Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior
Procedia PDF Downloads 12721954 Reframing Physical Activity for Health
Authors: M. Roberts
Abstract:
We Are Undefeatable - is a mass marketing behaviour change campaign that aims to support the least active people living with long term health conditions to be more active. This is an important issue to address because people with long term conditions are an historically underserved community for the sport and physical activity sector and the least active of those with long term conditions have the most to gain in health and wellbeing benefits. The campaign has generated a significant change in the way physical activity is communicated and people with long term conditions are represented in the media and marketing. The goal is to create a social norm around being active. The campaign is led by a unique partnership of organisations: the Richmond Group of Charities (made up of Age UK, Alzheimer’s Society, Asthma + Lung UK, Breast Cancer Now, British Heart Foundation, British Red Cross, Diabetes UK, Macmillan Cancer Support, Rethink Mental Illness, Royal Voluntary Service, Stroke Association, Versus Arthritis) along with Mind, MS Society, Parkinson’s UK and Sport England, with National Lottery Funding. It is underpinned by the COM-B model of behaviour change. It draws on the lived experience of people with multiple long term conditions to shape the look and feel of the campaign and all the resources available. People with long term conditions are the campaign messengers, central to the ethos of the campaign by telling their individual stories of overcoming barriers to be active with their health conditions. The central messaging is about finding a way to be active that works for the individual. We Are Undefeatable is evaluated through a multi-modal approach, including regular qualitative focus groups and a quantitative evaluation tracker undertaken three times a year. The campaign has highlighted the significant barriers to physical activity for people with long term conditions. This has changed the way our partnership talks about physical activity but has also had an impact on the wider sport and physical activity sector, prompting an increasing departure from traditional messaging and marketing approaches for this audience of people with long term conditions. The campaign has reached millions of people since its launch in 2019, through multiple marketing and partnership channels including primetime TV advertising and promotion through health professionals and in health settings. Its diverse storytellers make it relatable to its target audience and the achievable activities highlighted and inclusive messaging inspire our audience to take action as a result of seeing the campaign. The We Are Undefeatable campaign is a blueprint for physical activity campaigns; it not only addresses individual behaviour change but plays a role in addressing systemic barriers to physical activity by sharing the lived experience insight to shape policy and professional practice.Keywords: behaviour change, long term conditions, partnership, relatable
Procedia PDF Downloads 6521953 Theoretical Framework for Value Creation in Project Oriented Companies
Authors: Mariusz Hofman
Abstract:
The paper ‘Theoretical framework for value creation in Project-Oriented Companies’ is designed to determine, how organisations create value and whether this allows them to achieve market success. An assumption has been made that there are two routes to achieving this value. The first one is to create intangible assets (i.e. the resources of human, structural and relational capital), while the other one is to create added value (understood as the surplus of revenue over costs). It has also been assumed that the combination of the achieved added value and unique intangible assets translates to the success of a project-oriented company. The purpose of the paper is to present hypothetical and deductive model which describing the modus operandi of such companies and approach to model operationalisation. All the latent variables included in the model are theoretical constructs with observational indicators (measures). The existence of a latent variable (construct) and also submodels will be confirmed based on a covariance matrix which in turn is based on empirical data, being a set of observational indicators (measures). This will be achieved with a confirmatory factor analysis (CFA). Due to this statistical procedure, it will be verified whether the matrix arising from the adopted theoretical model differs statistically from the empirical matrix of covariance arising from the system of equations. The fit of the model with the empirical data will be evaluated using χ2, RMSEA and CFI (Comparative Fit Index). How well the theoretical model fits the empirical data is assessed through a number of indicators. If the theoretical conjectures are confirmed, an interesting development path can be defined for project-oriented companies. This will let such organisations perform efficiently in the face of the growing competition and pressure on innovation.Keywords: value creation, project-oriented company, structural equation modelling
Procedia PDF Downloads 297