Search results for: space vector pulse width modulation
3420 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification
Procedia PDF Downloads 3273419 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer
Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari
Abstract:
Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater
Procedia PDF Downloads 3193418 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder
Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen
Abstract:
Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.Keywords: natural language inference, explanation generation, variational auto-encoder, generative model
Procedia PDF Downloads 1513417 Molecular Profiles of Microbial Etiologic Agents Forming Biofilm in Urinary Tract Infections of Pregnant Women by RTPCR Assay
Authors: B. Nageshwar Rao
Abstract:
Urinary tract infection (UTI) represents the most commonly acquired bacterial infection worldwide, with substantial morbidity, mortality, and economic burden. The objective of the study is to characterize the microbial profiles of uropathogenic in the obstetric population by RTPCR. Study design: An observational cross-sectional study was performed at a single tertiary health care hospital among 50 pregnant women with UTIs, including asymptomatic and symptomatic patients attending the outpatient department and inpatient department of Obstetrics and Gynaecology.Methods: Serotyping and genes detection of various uropathogens were studied using RTPCR. Pulse filed gel electrophoresis methods were used to determine the various genetic profiles. Results: The present study shows that CsgD protein, involved in biofilm formation in Escherichia coli, VIM1, IMP1 genes for Klebsiella were identified by using the RTPCR method. Our results showed that the prevalence of VIM1 and IMP1 genes and CsgD protein in E.coli showed a significant relationship between strong biofilm formation, and this may be due to the prevalence of specific genes. Finally, the genetic identification of RTPCR results for both bacteria was correlated with each other and concluded that the above uropathogens were common isolates in producing Biofilm in the pregnant woman suffering from urinary tract infection in our hospital observational study.Keywords: biofilms, Klebsiella, E.coli, urinary tract infection
Procedia PDF Downloads 1263416 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher
Abstract:
The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with aKeywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy
Procedia PDF Downloads 1263415 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.Keywords: data compression, ultrasonic communication, guided waves, FEM analysis
Procedia PDF Downloads 1243414 Lentiviral-Based Novel Bicistronic Therapeutic Vaccine against Chronic Hepatitis B Induces Robust Immune Response
Authors: Mohamad F. Jamiluddin, Emeline Sarry, Ana Bejanariu, Cécile Bauche
Abstract:
Introduction: Over 360 million people are chronically infected with hepatitis B virus (HBV), of whom 1 million die each year from HBV-associated liver cirrhosis or hepatocellular carcinoma. Current treatment options for chronic hepatitis B depend on interferon-α (IFNα) or nucleos(t)ide analogs, which control virus replication but rarely eliminate the virus. Treatment with PEG-IFNα leads to a sustained antiviral response in only one third of patients. After withdrawal of the drugs, the rebound of viremia is observed in the majority of patients. Furthermore, the long-term treatment is subsequently associated with the appearance of drug resistant HBV strains that is often the cause of the therapy failure. Among the new therapeutic avenues being developed, therapeutic vaccine aimed at inducing immune responses similar to those found in resolvers is of growing interest. The high prevalence of chronic hepatitis B necessitates the design of better vaccination strategies capable of eliciting broad-spectrum of cell-mediated immunity(CMI) and humoral immune response that can control chronic hepatitis B. Induction of HBV-specific T cells and B cells by therapeutic vaccination may be an innovative strategy to overcome virus persistence. Lentiviral vectors developed and optimized by THERAVECTYS, due to their ability to transduce non-dividing cells, including dendritic cells, and induce CMI response, have demonstrated their effectiveness as vaccination tools. Method: To develop a HBV therapeutic vaccine that can induce a broad but specific immune response, we generated recombinant lentiviral vector carrying IRES(Internal Ribosome Entry Site)-containing bicistronic constructs which allow the coexpression of two vaccine products, namely HBV T- cell epitope vaccine and HBV virus like particle (VLP) vaccine. HBV T-cell epitope vaccine consists of immunodominant cluster of CD4 and CD8 epitopes with spacer in between them and epitopes are derived from HBV surface protein, HBV core, HBV X and polymerase. While HBV VLP vaccine is a HBV core protein based chimeric VLP with surface protein B-cell epitopes displayed. In order to evaluate the immunogenicity, mice were immunized with lentiviral constructs by intramuscular injection. The T cell and antibody immune responses of the two vaccine products were analyzed using IFN-γ ELISpot assay and ELISA respectively to quantify the adaptive response to HBV antigens. Results: Following a single administration in mice, lentiviral construct elicited robust antigen-specific IFN-γ responses to the encoded antigens. The HBV T- cell epitope vaccine demonstrated significantly higher T cell immunogenicity than HBV VLP vaccine. Importantly, we demonstrated by ELISA that antibodies are induced against both HBV surface protein and HBV core protein when mice injected with vaccine construct (p < 0.05). Conclusion: Our results highlight that THERAVECTYS lentiviral vectors may represent a powerful platform for immunization strategy against chronic hepatitis B. Our data suggests the likely importance of Lentiviral vector based novel bicistronic construct for further study, in combination with drugs or as standalone antigens, as a therapeutic lentiviral based HBV vaccines. THERAVECTYS bicistronic HBV vaccine will be further evaluated in animal efficacy studies.Keywords: chronic hepatitis B, lentiviral vectors, therapeutic vaccine, virus-like particle
Procedia PDF Downloads 3343413 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 693412 High-Resolution ECG Automated Analysis and Diagnosis
Authors: Ayad Dalloo, Sulaf Dalloo
Abstract:
Electrocardiogram (ECG) recording is prone to complications, on analysis by physicians, due to noise and artifacts, thus creating ambiguity leading to possible error of diagnosis. Such drawbacks may be overcome with the advent of high resolution Methods, such as Discrete Wavelet Analysis and Digital Signal Processing (DSP) techniques. This ECG signal analysis is implemented in three stages: ECG preprocessing, features extraction and classification with the aim of realizing high resolution ECG diagnosis and improved detection of abnormal conditions in the heart. The preprocessing stage involves removing spurious artifacts (noise), due to such factors as muscle contraction, motion, respiration, etc. ECG features are extracted by applying DSP and suggested sloping method techniques. These measured features represent peak amplitude values and intervals of P, Q, R, S, R’, and T waves on ECG, and other features such as ST elevation, QRS width, heart rate, electrical axis, QR and QT intervals. The classification is preformed using these extracted features and the criteria for cardiovascular diseases. The ECG diagnostic system is successfully applied to 12-lead ECG recordings for 12 cases. The system is provided with information to enable it diagnoses 15 different diseases. Physician’s and computer’s diagnoses are compared with 90% agreement, with respect to physician diagnosis, and the time taken for diagnosis is 2 seconds. All of these operations are programmed in Matlab environment.Keywords: ECG diagnostic system, QRS detection, ECG baseline removal, cardiovascular diseases
Procedia PDF Downloads 2973411 Parametric Study on the Behavior of Reinforced Concrete Continuous Beams Flexurally Strengthened with FRP Plates
Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour
Abstract:
External bonding of fiber reinforced polymer (FRP) plates to reinforced concrete (RC) beams is an effective technique for flexural strengthening. This paper presents an analytical parametric study on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers, conducted using simple uniaxial nonlinear finite element model (UNFEM). UNFEM is able to estimate the load-carrying capacity, different failure modes and the interfacial stresses of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. The study investigated the effect of five key parameters on the behavior and moment redistribution of FRP-reinforced continuous beams. The investigated parameters were the length of the FRP plate, the width and the thickness of the FRP plate, the ratio between the area of the FRP plate to the concrete area, the cohesive shear strength of the adhesive layer, and the concrete compressive strength. The investigation resulted in a number of important conclusions reflecting the effects of the studied parameters on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates.Keywords: continuous beams, parametric study, finite element, fiber reinforced polymer
Procedia PDF Downloads 3713410 Effects of Aerobic Training on MicroRNA Let-7a Expression and Levels of Tumor Tissue IL-6 in Mice With Breast Cancer
Authors: Leila Anoosheh
Abstract:
Aim: The aim of this study was to assess The effects of aerobic training on microRNA let-7a expression and levels of tumor tissue IL-6 in mice with breast cancer. Method: Twenty BALB/c c mice (4-5 weeks,17 gr mass) were cancerous by injection of estrogen-dependent receptor breast cancer cells MC4-L2 and divided into two groups: tumor-training(TT) and tumor-control(TC) group. Then TT group completed aerobic training for 6 weeks, 5 days per week (14-18 m/min). After tumor emersion, tumor width and length were measured by digital caliper every week. 48 hours after the last exercise subjects were killed. Tissue sampling were collected and stored in -70ᵒ. Tumor tissue was homogenized and let-7a expression and IL-6 levels were accounted with Real time-PCR and ELISA Kit respectively. Statistical analysis of let-7a was conducted by the REST software. Repeated measures and independent tests were used to assess tumor size and IL-6, respectively. Results: Tumor size and IL-6 levels were significantly decreased in TT group compare with TC group (p<0.05). microRNA let-7a was increased significantly in TT against control group respectively (p=0/000). Conclusion: Reduction in tumor size, followed by aerobic exercise can be attributed to the loss of inflammatory factors such as IL-6; It seems that regarding to up regulation effects of aerobic exercise training on let-7a and down regulation effects of that on IL-6 in mice with breast cancer, This type of training can be used as adjuvant therapy in conjunction with other therapies for breast cancer.Keywords: breast cancer, aerobic training, microRNA let-7a, IL-6
Procedia PDF Downloads 4323409 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1403408 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 1483407 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 943406 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies
Authors: Rituparna Nath, Shawn J. Marshall
Abstract:
Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age
Procedia PDF Downloads 2683405 Taking What Each Needs - The Basic Logic of Everyday Practice in State-backed Cultural Infrastructure in China
Authors: Yiling Shao, Megan Dai
Abstract:
This paper attempts to explore whether the cultural infrastructure supported by the Chinese government is still subject to a logic of “strict regulation”.Previous studies have pointed out that the "paternalism" tendency of China's cultural policy always leads to excessive government intervention in cultural development, while Chinese cultural practitioners can only seek cultural autonomy in the cracks of supervision. This can also explain why Chinese cultural policies sometimes have different effects than the official expectations.But this only reflects one aspect of China's cultural policy. In fact, the welfare cultural infrastructure funded by the government seems to highlight the principles of "safeguarding citizens' cultural rights" and "citizens' voluntary" rather than "indoctrination" and "enlightenment", What new features of China's cultural policy are reflected behind this policy orientation that is completely different from the logic of "regulation", which has also become an important issue in this paper. Based on the field survey of a cultural infrastructure (Gao ming District Cultural Center) in Gao ming District, Fo shan City, Guangdong Province, China, for nearly one year, the authors have obtained many text and picture materials.The paper discusses the dual role of cultural centers in China's cultural policy -both as a formal commitment by the state to protect citizens' basic cultural rights and as a social space for citizens to use preferential policies to obtain cultural capital. All in all, the author have conclued three operational logics of the cultural infrastructure currently supported by the Chinese government (at least in developed areas): first, the cultural center has become a versatile cultural space; second, grass-roots cultural cadres can be described as "policy entrepreneurs"; third, ordinary citizens will use the officially supported cultural infrastructure to increase cultural capital. This paper argues that, in comparison to the common “regulatory hand” in the field of cultural industries, in cultural infrastructure supported by state, the authorities and citizens are not in conflict. On the contrary, authorities must adopt a de-regulatory "pleasing" strategy to gain the support of citizens.Keywords: cultural infrastructure, cultural capital, deregulation, policy entrepreneur
Procedia PDF Downloads 973404 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey
Authors: Lavanya Madhuri Bollipo, K. V. Kadambari
Abstract:
Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)
Procedia PDF Downloads 3993403 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task
Authors: Bryony Pound
Abstract:
This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.Keywords: benefits, greenspace, learning, restoration
Procedia PDF Downloads 1273402 Next-Generation Lunar and Martian Laser Retro-Reflectors
Authors: Simone Dell'Agnello
Abstract:
There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR.Keywords: general relativity, laser retroreflectors, lunar laser ranging, Mars geodesy
Procedia PDF Downloads 2703401 Experimental Investigation of Stain Removal Performance of Different Types of Top Load Washing Machines with Textile Mechanical Damage Consideration
Authors: Ehsan Tuzcuoğlu, Muhammed Emin Çoban, Songül Byraktar
Abstract:
One of the main targets of the washing machine is to remove any dirt and stains from the clothes. Especially, the stain removal is significantly important in the Far East market, where the high percentage of the consumers use the top load washing machines as washing appliance. They use all pretreatment methods (i.e. soaking, prewash, and heavy functions) to eliminate the stains from their clothes. Therefore, with this study it is aimed to study experimentally the stain removal performance of 3 different Top-Loading washing machines of the Far East market with 24 different types of stains which are mostly related to Far East culture. In the meanwhile, the mechanical damge on laundry is examined for each machine to see the mechanical effect of the related stain programs on the textile load of the machines. The test machines vary according to have a heater, moving part(s)on their impeller, and to be in different height/width ratio of the drum. The results indicate that decreasing the water level inside the washing machine might result in better soil removal as well as less textile damage. Beside this, the experimental results reveal that heating has the main effect on stain removal. Two-step (or delayed) heating and a lower amount of water can also be considered as the further parametersKeywords: laundry, washing machine, top load washing machine, stain removal, textile damage, mechanical textile damage
Procedia PDF Downloads 1243400 Linkages Between Climate Change, Agricultural Productivity, Food Security and Economic Growth
Authors: Jihène Khalifa
Abstract:
This study analyzed the relationships between Tunisia’s economic growth, food security, agricultural productivity, and climate change using the ARDL model for the period from 1990 to 2022. The ARDL model reveals a positive correlation between economic growth and lagged agricultural productivity. Additionally, the vector autoregressive (VAR) model highlights the beneficial impact of lagged agricultural productivity on economic growth and the negative effect of rainfall on economic growth. Granger causality analysis identifies unidirectional relationships from economic growth to agricultural productivity, crop production, food security, and temperature variations, as well as from temperature variations to crop production. Furthermore, a bidirectional causality is established between crop production and food security. The study underscores the impact of climate change on crop production and suggests the need for adaptive strategies to mitigate these climate effects.Keywords: economic growth, agriculture, food security, climate change, ARDl, VAR
Procedia PDF Downloads 313399 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 3413398 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.Keywords: feature selection, LIWC, machine learning, politics
Procedia PDF Downloads 3823397 Identification of Ideal Plain Sufu (Fermented Soybean Curds) Based on Ideal Profile Method and Assessment of the Consistency of Ideal Profiles Obtained from Consumers
Authors: Yan Ping Chen, Hau Yin Chung
Abstract:
The Ideal Profile Method (IPM) is a newly developed descriptive sensory analysis conducted by consumers without previous training. To perform this test, both the perceived and the ideal intensities from the judgements of consumers on products’ attributes, as well as their hedonic ratings were collected for formulating an ideal product (the most liked one). In addition, Ideal Profile Analysis (IPA) was conducted to check the consistency of the ideal data at both the panel and consumer levels. In this test, 12 commercial plain sufus bought from Hong Kong local market were tested by 113 consumers according to the IPM, and rated on 22 attributes. Principal component analysis was used to profile the perceived and the ideal spaces of tested products. The consistency of ideal data was then checked by IPA. The result showed that most consumers shared a common ideal. It was observed that the sensory product space and the ideal product space were structurally similar. Their first dimensions all opposed products with intense fermented related aroma to products with less fermented related aroma. And the predicted ideal profile (the estimated liking score around 7.0 in a 9.0-point scale) got higher hedonic score than the tested products (the average liking score around 6.0 in a 9.0-point scale). For the majority of consumers (95.2%), the stated ideal product considered as a potential ideal through checking the R2 coefficient value. Among all the tested products, sample-6 was the most popular one with consumer liking percentage around 30%. This product with less fermented and moldy flavour but easier to melt in mouth texture possessed close sensory profile according to the ideal product. This experiment validated that data from untrained consumers could be guided as useful information. Appreciated sensory characteristics could be served as reference in the optimization of the commercial plain sufu.Keywords: ideal profile method, product development, sensory evaluation, sufu (fermented soybean curd)
Procedia PDF Downloads 1883396 A Survey on Compression Methods for Table Constraints
Authors: N. Gharbi
Abstract:
Constraint Satisfaction problems are mathematical problems that are often used to model many real-world problems for which we look if there exists a solution satisfying all its constraints. Table constraints are important for modeling parts of many problems since they list all combinations of allowed or forbidden values. However, they admit practical limitations because they are sometimes too large to be represented in a direct way. In this paper, we present a survey of the different categories of the proposed approaches to compress table constraints in order to reduce both space and time complexities.Keywords: constraint programming, compression, data mining, table constraints
Procedia PDF Downloads 3253395 New Isolate of Cucumber Mosaic Virus Infecting Banana
Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud
Abstract:
Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.Keywords: banana, CMV, transmission, CP gene, RT-PCR
Procedia PDF Downloads 3413394 A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator
Authors: Abolfazl Zaraki, Yoshikatsu Hayashi, Harry Thorpe, Vincent Strong, Gisle-Andre Larsen, William Holderbaum
Abstract:
Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application.Keywords: hyper-redundant robots, kinematic analysis, semi-autonomous control, serial manipulators
Procedia PDF Downloads 1573393 Defining the Turbulent Coefficients with the Effect of Atmospheric Stability in Wake of a Wind Turbine Wake
Authors: Mohammad A. Sazzad, Md M. Alam
Abstract:
Wind energy is one of the cleanest form of renewable energy. Despite wind industry is growing faster than ever there are some roadblocks towards the improvement. One of the difficulties the industry facing is insufficient knowledge about wake within the wind farms. As we know energy is generated in the lowest layer of the atmospheric boundary layer (ABL). This interaction between the wind turbine (WT) blades and wind introduces a low speed wind region which is defined as wake. This wake region shows different characteristics under each stability condition of the ABL. So, it is fundamental to know this wake region well which is defined mainly by turbulence transport and wake shear. Defining the wake recovery length and width are very crucial for wind farm to optimize the generation and reduce the waste of power to the grid. Therefore, in order to obtain the turbulent coefficients of velocity and length, this research focused on the large eddy simulation (LES) data for neutral ABL (NABL). According to turbulent theory, if we can present velocity defect and Reynolds stress in the form of local length and velocity scales, they become invariant. In our study velocity and length coefficients are 0.4867 and 0.4794 respectively which is close to the theoretical value of 0.5 for NABL. There are some invariant profiles because of the presence of thermal and wind shear power coefficients varied a little from the ideal condition.Keywords: atmospheric boundary layer, renewable energy, turbulent coefficient, wind turbine, wake
Procedia PDF Downloads 1323392 The Impact of Foreign Direct Investment on Economic Growth of Ethiopia: Econometrics Cointegration Analysis
Authors: Dejene Gizaw Kidane
Abstract:
This study examines the impact of foreign direct investment on economic growth of Ethiopia using yearly time-series data for 1974 through 2013. Economic growth is proxies by real per capita gross domestic product and foreign direct investment proxies by the inflow of foreign direct investment. Other control variables such as gross domestic saving, trade, government consumption and inflation has been incorporated. In order to fully account for feedbacks, a vector autoregressive model is utilized. The results show that there is a stable, long-run relationship between foreign direct investment and economic growth. The variance decomposition results show that the main sources of Ethiopia economic growth variations are due largely own shocks. The pairwise Granger causality results show that there is a unidirectional causality that runs from FDI to economic growth of Ethiopia. Hence, the researcher therefore recommends that, FDI facilitate economic growth, so the government has to exert much effort in order to attract more FDI into the country.Keywords: real per capita GDP, FDI, co-integration, VECM, Granger causality
Procedia PDF Downloads 4363391 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration
Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang
Abstract:
The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability
Procedia PDF Downloads 345