Search results for: reactive approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14631

Search results for: reactive approach

11841 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings

Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout

Abstract:

Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.

Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions

Procedia PDF Downloads 59
11840 Political Discourse Used in the TV Talk Shows of Pakistani Media

Authors: Hafiz Sajjad Hussain, Asad Razzaq

Abstract:

The study aims to explore the relationship between application of speech and discourse used by the political workers and their leaders for maintaining authoritative approach and dialog power. The representation of these relationships between ideology and language in the analysis of discourse and spoken text following Van Dijk Socio-Cognitive model. Media and political leaders are two pillars of a state and their role is so important for development and effects on the society. Media has become an industry in the recent years in the globe, and especially, the private sector developed a lot in the last decade in Pakistan. Media is the easiest way of communication with the large community in a short time and used discourse independently. The prime time of the news channels in Pakistan presents the political programs on most favorite story or incident of the day. The current program broadcasted by a private channel ARY News July 6, 2014 covered the most top story of the day. The son of Ex. CJ Arslan Iftikhar moves an application to Election Commission of Pakistan about the daughter of the most popular political leader and chairman PTI Imran Khan. This movement turns the whole scenario of the political parties and media got a hot issue form discussion. This study also shows that the ideology and meanings which are presented by the TV channels not always obvious for readers.

Keywords: electronic media, political discourse, ideology of media, power, authoritative approach

Procedia PDF Downloads 529
11839 A Metaheuristic Approach for Optimizing Perishable Goods Distribution

Authors: Bahare Askarian, Suchithra Rajendran

Abstract:

Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.

Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models

Procedia PDF Downloads 18
11838 An Approach to Apply Kernel Density Estimation Tool for Crash Prone Location Identification

Authors: Kazi Md. Shifun Newaz, S. Miaji, Shahnewaz Hazanat-E-Rabbi

Abstract:

In this study, the kernel density estimation tool has been used to identify most crash prone locations in a national highway of Bangladesh. Like other developing countries, in Bangladesh road traffic crashes (RTC) have now become a great social alarm and the situation is deteriorating day by day. Today’s black spot identification process is not based on modern technical tools and most of the cases provide wrong output. In this situation, characteristic analysis and black spot identification by spatial analysis would be an effective and low cost approach in ensuring road safety. The methodology of this study incorporates a framework on the basis of spatial-temporal study to identify most RTC occurrence locations. In this study, a very important and economic corridor like Dhaka to Sylhet highway has been chosen to apply the method. This research proposes that KDE method for identification of Hazardous Road Location (HRL) could be used for all other National highways in Bangladesh and also for other developing countries. Some recommendations have been suggested for policy maker to reduce RTC in Dhaka-Sylhet especially in black spots.

Keywords: hazardous road location (HRL), crash, GIS, kernel density

Procedia PDF Downloads 314
11837 Urban Freight Station: An Innovative Approach to Urban Freight

Authors: Amit Kumar Jain, Surbhi Jain

Abstract:

The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.

Keywords: congestion, urban freight, intelligent transport system, pollution

Procedia PDF Downloads 303
11836 Identity Management in Virtual Worlds Based on Biometrics Watermarking

Authors: S. Bader, N. Essoukri Ben Amara

Abstract:

With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.

Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world

Procedia PDF Downloads 265
11835 The Dynamic Metadata Schema in Neutron and Photon Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata stands at the forefront of advancing data management practices within research communities, with particular significance in the realms of neutron and photon scattering. This paper introduces a groundbreaking approach—dynamic metadata schema—within the context of X-ray Photon Correlation Spectroscopy (XPCS). XPCS, a potent technique unravelling nanoscale dynamic processes, serves as an illustrative use case to demonstrate how dynamic metadata can revolutionize data acquisition, sharing, and analysis workflows. This paper explores the challenges encountered by the neutron and photon communities in navigating intricate data landscapes and highlights the prowess of dynamic metadata in addressing these hurdles. Our proposed approach empowers researchers to tailor metadata definitions to the evolving demands of experiments, thereby facilitating streamlined data integration, traceability, and collaborative exploration. Through tangible examples from the XPCS domain, we showcase how embracing dynamic metadata standards bestows advantages, enhancing data reproducibility, interoperability, and the diffusion of knowledge. Ultimately, this paper underscores the transformative potential of dynamic metadata, heralding a paradigm shift in data management within the neutron and photon research communities.

Keywords: metadata, FAIR, data analysis, XPCS, IoT

Procedia PDF Downloads 61
11834 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 520
11833 Aberrant Consumer Behavior in Seller’s and Consumer’s Eyes: Newly Developed Classification

Authors: Amal Abdelhadi

Abstract:

Consumer misbehavior evaluation can be markedly different based on a number of variables and different from one environment to another. Using three aberrant consumer behavior (ACB) scenarios (shoplifting, stealing from hotel rooms and software piracy) this study aimed to explore Libyan seller and consumers of ACB. Materials were collected by using a multi-method approach was employed (qualitative and quantitative approaches) in two fieldwork phases. In the phase stage, a qualitative data were collected from 26 Libyan sellers’ by face-to-face interviews. In the second stage, a consumer survey was used to collect quantitative data from 679 Libyan consumers. This study found that the consumer’s and seller’s evaluation of ACB are not always consistent. Further, ACB evaluations differed based on the form of ACB. Furthermore, the study found that not all consumer behaviors that were considered as bad behavior in other countries have the same evaluation in Libya; for example, software piracy. Therefore this study suggested a newly developed classification of ACB based on marketers’ and consumers’ views. This classification provides 9 ACB types within two dimensions (marketers’ and consumers’ views) and three degrees of behavior evaluation (good, acceptable and misbehavior).

Keywords: aberrant consumer behavior, Libya, multi-method approach, planned behavior theory

Procedia PDF Downloads 573
11832 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach

Authors: Mortez Alijani, Anas Osman

Abstract:

Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.

Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point

Procedia PDF Downloads 164
11831 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA

Procedia PDF Downloads 549
11830 Defining Methodology for Multi Model Software Process Improvement Framework

Authors: Aedah Abd Rahman

Abstract:

Software organisations may implement single or multiple frameworks in order to remain competitive. There are wide selection of generic Software Process Improvement (SPI) frameworks, best practices and standards implemented with different focuses and goals. Issues and difficulties emerge in the SPI practices from the context of software development and IT Service Management (ITSM). This research looks into the integration of multiple frameworks from the perspective of software development and ITSM. The research question of this study is how to define steps of methodology to solve the multi model software process improvement problem. The objective of this study is to define the research approach and methodologies to produce a more integrated and efficient Multi Model Process Improvement (MMPI) solution. A multi-step methodology is used which contains the case study, framework mapping and Delphi study. The research outcome has proven the usefulness and appropriateness of the proposed framework in SPI and quality practice in Malaysian software industries. This mixed method research approach is used to tackle problems from every angle in the context of software development and services. This methodology is used to facilitate the implementation and management of multi model environment of SPI frameworks in multiple domains.

Keywords: Delphi study, methodology, multi model software process improvement, service management

Procedia PDF Downloads 260
11829 Structural Stress of Hegemon’s Power Loss: A Pestle Analysis for Pacification and Security Policy Plan

Authors: Sehrish Qayyum

Abstract:

Active military power contention is shifting to economic and cyberwar to retain hegemony. Attuned Pestle analysis confirms that structural stress of hegemon’s power loss drives a containment approach towards caging actions. Ongoing diplomatic, asymmetric, proxy and direct wars are increasing stress hegemon’s power retention due to tangled military and economic alliances. It creates the condition of catalepsy with defective reflexive control which affects the core warfare operations. When one’s own power is doubted it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of Hegemon’s power game since the early WWI to WWII, WWII-to Cold War and then to the current era in three chronological periods exposits that Thucydides’s trap became the reason for war broke out. Thirst for power is the demise of imagination and cooperation for better sense to prevail instead it drives ashes to dust. Pestle analysis is a wide array of evaluation from political and economic to legal dimensions of the state matters. It helps to develop the Pacification and Security Policy Plan (PSPP) to avoid hegemon’s structural stress of power loss in fact, in turn, creates an alliance with maximum amicable outputs. PSPP may serve to regulate and pause the hurricane of power clashes. PSPP along with a strategic work plan is based on Pestle analysis to deal with any conceivable war condition and approach for saving international peace. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a generic application of probability tests to find the best possible options and conditions to develop PSPP for any adversity possible so far. Innovation in expertise begets innovation in planning and action-plan to serve as a rheostat approach to deal with any plausible power clash.

Keywords: alliance, hegemon, pestle analysis, pacification and security policy plan, security

Procedia PDF Downloads 106
11828 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship

Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din

Abstract:

Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.

Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis

Procedia PDF Downloads 198
11827 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 106
11826 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections

Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee

Abstract:

The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.

Keywords: vaccination, NFHS, machine learning, public health

Procedia PDF Downloads 59
11825 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 273
11824 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 880
11823 Systems Lens: Towards Sustainable Management of Maintenance and Renewal of Wire-Based Infrastructure: The Case of Water Network in the City of Linköping, Sweden

Authors: E. Hegazy, S. Anderberg, J. Krook

Abstract:

The city's wire-based infrastructure systems (WBIS) are responsible for the delivery of electricity, telecommunications, sanitation, drainage, and district heating and are a necessity for sustainable modern urban life. Maintaining the functionality of these structures involves high costs and, brings disturbance to the local community and effects on the environment. One key reason for this is that the cables and pipes are placed under streets, making system parts easily worn and their service lifetime reduced, and all maintenance and renewal rely on recurrent needs for excavation. In Sweden, a significant part of wire-based infrastructure is already outdated and will need to be replaced in the coming decades. The replacement of these systems will entail massive costs as well as important traffic disruption and environmental disturbance. However, this challenge may also open a unique opportunity to introduce new, more sustainable technologies and management practices. The transformation of WBIS management for long-term sustainability and meeting maintenance and renewal needs does not have a comprehensive approach. However, a systemic approach may inform WBIS management. This approach considers both technical and non-technical aspects, as well as time-related factors. Nevertheless, there is limited systemic knowledge of how different factors influence current management practices. The aim of this study is to address this knowledge gap and contribute to the understanding of what factors influence the current practice of WBIS management. A case study approach is used to identify current management practices, the underlying factors that influence them, and their implications for sustainability outcomes. The case study is based on both quantitative data on the local system and data from interviews and workshops with local practitioners and other stakeholders. Linköping was selected as a case since it provided good accessibility to the water administration and relevant data for analyzing water infrastructure management strategies. It is a sufficiently important city in Sweden to be able to identify challenges, which, to some extent, are common to all Swedish cities. By uncovering current practices and what is influencing Linköping, knowledge gaps and uncertainties related to sustainability consequences were highlighted. The findings show that goals, priorities, and policies controlling management are short-termed, and decisions on maintenance and renewal are often restricted to finding solutions to the most urgent issues. Sustainability transformation in the infrastructure area will not be possible through individual efforts without coordinated technical, organizational, business, and regulatory changes.

Keywords: case study, infrastructure, management, practice, Sweden

Procedia PDF Downloads 84
11822 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date

Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian

Abstract:

To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.

Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven

Procedia PDF Downloads 174
11821 Nexus of Community-Based Tourism Business and Sustainable Livelihood Practices: A Case Study of Amaltari Tharu Village Community, Nepal

Authors: Chet Narayan Acharya, Prachyakorn Chaiyakot, Nuttaya Yuangyai

Abstract:

This research explores the symbiotic relationship between community based tourism (CBT) businesses and sustainable livelihood practices in the context of Amaltari Tharu Village Community, Nepal. Through a thorough investigation, it analyzes the impact of community-based tourism entrepreneurship on local livelihoods. Using an interpretive case study approach, it assesses how tourism activities affect the sociocultural, economic, and environmental dimensions of the community. The research highlights the sustainable livelihood practices embraced by local communities, guided by the principles of sustainable development. The study employs a triangulation approach to analyze data, aiming to generate insights that contribute to a KICK START discourse on sustainable tourism in the region, shedding light on the connection between community-based tourism entrepreneurship and local livelihood practices. The findings are expected to offer valuable discourse among academic researchers and suggestions for sustainable tourism management strategies in similar global contexts.

Keywords: community based tourism businesses, sustainable livelihood, Nepal, sociocultural and environmental impact, kick start discourse

Procedia PDF Downloads 40
11820 Domain Driven Design vs Soft Domain Driven Design Frameworks

Authors: Mohammed Salahat, Steve Wade

Abstract:

This paper presents and compares the SSDDD “Systematic Soft Domain Driven Design Framework” to DDD “Domain Driven Design Framework” as a soft system approach of information systems development. The framework use SSM as a guiding methodology within which we have embedded a sequence of design tasks based on the UML leading to the implementation of a software system using the Naked Objects framework. This framework has been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, a comparison between SSDDD and DDD is presented in this paper, to show how SSDDD improved DDD as an approach to modelling and implementing business domain perspectives for Information Systems Development. The comparison process, the results, and the improvements are presented in the following sections of this paper.

Keywords: domain-driven design, soft domain-driven design, naked objects, soft language

Procedia PDF Downloads 298
11819 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic interference Shielding: An Application of Intelligent Fabrics

Authors: Mourad Makhlouf Sabrina Bouriche, Zoubir Benmaamar, Didier Villemin

Abstract:

Background: The increasing presence of electromagnetic interference (EMI) requires the development of effective protection solutions. Intelligent textiles offer a promising approach due to their wear ability and the possibility of integration into everyday clothing. In this study, the use of graphene and polyaniline for EMI shielding on cotton fabrics was examined. Methods: In this study, the continuous dyeing of recycled graphite-derived graphene and polyaniline was examined. Bottom-reforming technology was adopted to improve adhesion and achieve uniform distribution of conductive material on the fiber surface. The effect of material weight ratio on fabric performance and X-band EMI shielding effectiveness (SE) was evaluated. Significant Findings: The dyed cotton fabrics incorporating graphene, polyaniline, and their combination exhibited improved conductivity. Notably, these fabrics achieved EMI SE values ranging from 9 to 16 dB within the X-band frequency range (8-9 GHz). These findings demonstrate the potential of this approach for developing intelligent textiles with effective EMI shielding capabilities. Additionally, the utilization of recycled materials contributes to a more sustainable shielding solution.

Keywords: Intelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling

Procedia PDF Downloads 43
11818 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 402
11817 Conceptualizing Psycho-Social Intervention with Juvenile Offenders as Attachment Therapy: A Practical Approach

Authors: Genziana Lay

Abstract:

A wide majority of older children and adolescents who enter the juvenile court system present with an array of problematic symptoms and behaviors including anxiety, depression, aggressive acting out, detachment, and substance abuse. Attachment theory offers a framework for understanding normative and pathological functioning, which during development is influenced by emotional, social and cognitive elements. There is clear evidence that children and adolescents with the highest risk of developing adaptation problems present an insecure attachment profile. Most offending minors have experienced dysfunctional family relationships as well as social and/or economic deprivation. Their maladaptive attachment develops not only through their relationship with caregivers but with the environment at large. Activation of their faulty attachment system leads them to feel emotionally overwhelmed and engage in destructive behaviors and decision-making. A psycho-social intervention with this population conceptualized as attachment therapy is a multi-faceted, practical approach that has shown excellent results in terms of increased psychological well-being and drastically reduced rates of re-offense/ destructive behavior. Through several; components including psychotherapy, monitoring, volunteering, meditation and socialization, the program focuses on seven dimensions: self-efficacy, responsibility, empathy/reparation, autonomy/security, containment/structure, insight building, and relational health. This paper presents the program and illustrates how the framework of attachment theory practically applied to psycho-social intervention has great therapeutic and social reparation potential. Preliminary evidence drawn from the Sassari Juvenile Court is very promising; this paper will illustrate these results and propose an even more comprehensive, applicable approach to psycho-social reparative intervention that leads to greater psychological health and reduced recidivism in the child and adolescent population.

Keywords: attachment, child, adolescent, crime, juvenile, psychosocial

Procedia PDF Downloads 172
11816 Vine Growers' Climate Change Adaptation Strategies in Hungary

Authors: Gabor Kiraly

Abstract:

Wine regions are based on equilibria between climate, soil, grape varieties, and farming expertise that define the special character and quality of local vine farming and wine production. Changes in climate conditions may increase risk of destabilizing this equilibrium. Adaptation decisions, including adjusting practices, processes and capitals in response to climate change stresses – may reduce this risk. However, farmers’ adaptive behavior are subject to a wide range of factors and forces such as links between climate change implications and production, farm - scale adaptive capacity and other external forces that might hinder them to make efficient response to climate change challenges. This paper will aim to study climate change adaptation practices and strategies of grape growers in a way of applying a complex and holistic approach involving theories, methods and tools both from environmental and social sciences. It will introduce the field of adaptation studies as an evidence - based discourse by presenting an overview of examples from wine regions where adaptation studies have already reached an advanced stage. This will serve as a theoretical background for a preliminary research with the aim to examine the feasibility and applicability of such a research approach in the Hungarian context.

Keywords: climate change, adaptation, viticulture, Hungary

Procedia PDF Downloads 237
11815 The Potential for Tourism Development in the Greater Chinhoyi Area in Zimbabwe: A Systems Approach in an Appetizer Destination

Authors: Phillip F. Kanokanga, Patrick W. Mamimine, Molline Mwando, Charity Mapingure

Abstract:

Tourism development tends to follow anchor attractions, including cities and their surroundings, while marginalizing small towns and their environs. This is even though the small towns and their hinterlands can also offer competitive tourism products. The Zimbabwe Tourism Authority (ZTA) gathers visitor statistics of major tourist destinations only thereby sidelining the density of tourist traffic that either passes through or visits the small towns in the country. Unless this problem is addressed, the tourism potential of small towns and their hinterlands will not be fully tapped for economic development. Using qualitative research methodology, this study investigated the opportunities for tourism development in the Greater Chinhoyi Area. The study revealed that the Greater Chinhoyi area had potential for heritage tourism, village tourism, urban tourism, educational tourism, dark tourism, recreational tourism, agrotourism, and nature tourism. There is a need to link the various tourism resources in the Greater Chinhoyi area to anchor attractions in dominant resorts, then develop and present the tourism products in transit towns as ‘appetisers’ or ‘appetisser attractions’ before one gets to the main destination.

Keywords: anchor attractions, appetisers, heritage tourism, agrotourism, small towns, tourism corridor, systems approach, hidden treasures

Procedia PDF Downloads 73
11814 A Feminist Historical Institutional Approach and Gender Participation in Queensland Politics

Authors: Liz van Acker, Linda Colley

Abstract:

Political processes are shaped by the gendered culture of parliaments. This paper examines how the institution of parliament has been affected by the changing number of women in politics. In order to understand how and why gender change occurs, the paper employs a feminist historical institutionalism approach. It argues that while it is difficult to change the gendered nature of political institutions, it is possible, from a gender perspective, to understand the processes of change both formally and informally. Increasing women’s representation has been a slow process which has not occurred without political struggles. A broadly defined ‘feminist historical institutionalism’ has critiqued existing approaches to institutions and combined historical institutional analysis with tools of gender to enhance our understanding of institutional processes and change. The paper examines the gendered rules, norms, and practices that influence institutional design choices and processes. Institutions such as Parliament often are able to adjust to women’s entry and absorb them without too much interruption. Exploring the hidden aspects to informal institutions involves identifying unspoken and accepted norms that may guide decision-making – exposing and questioning the gender status quo. This paper examines the representation of women in the Queensland Parliament, Australia. It places the Queensland experience in historical context, as well as in the national and international context. The study is interesting, given that its gender representation has rocketed from one of the worst performing states in 2012 to one of the best performing in 2015 with further improvements in 2017. The state currently has a re-elected female Premier, a female Deputy Premier and a female-dominated cabinet – in fact, Queensland was the first ministry in Australia to have a majority of women in its Cabinet. However, it is unnecessary to dig far below these headlines to see that this is uncharacteristic of its history: progress towards this current position has been slow and patchy. The paper finds that matters such as the glass ceiling and the use of quotas explain women’s recent success in Queensland politics.

Keywords: feminist historical institutional approach, glass ceiling, quotas, women’s participation in politics

Procedia PDF Downloads 151
11813 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 499
11812 Tokenization of Blue Bonds as an Emerging Green Finance Tool

Authors: Rodrigo Buaiz Boabaid

Abstract:

Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process, while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.

Keywords: blue carbon, blue bonds, green finance, Tokenization, blockchain solutions

Procedia PDF Downloads 72