Search results for: noise estimation
181 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 483180 Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado
Authors: Wesley A. Saltarelli, Nicolas R. Finkler, Adriana C. P. Miwa, Maria C. Calijuri, Davi G. F. Cunha
Abstract:
The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state.Keywords: low-order streams, metabolism, net primary production, trophic state
Procedia PDF Downloads 258179 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications
Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky
Abstract:
InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor
Procedia PDF Downloads 255178 Examining the Effects of National Disaster on the Performance of Hospitality Industry in Korea
Authors: Kim Sang Hyuck, Y. Park Sung
Abstract:
The outbreak of national disasters stimulates the decrease of the both internal and domestic tourism demands, causing bad effects on the hospitality industry. The effective and efficient risk management regarding national disasters are being increasingly required from the hospitality industry practitioners and the tourism policymakers. To establish the effective and efficient risk management strategy on national disasters, the most essential prerequisite condition is the correct estimation of national disasters’ effects in terms of the size and duration of the damages occurred from national disaster on hospitality industry. More specifically, the national disasters are twofold: natural disaster and social disaster. In addition, the hospitality industry has consisted of several types of business, such as hotel, restaurant, travel agency, etc. As reasons of the above, it is important to consider how each type of national disasters differently influences on the performance of each type of hospitality industry. Therefore, the purpose of this study is examining the effects of national disaster on hospitality industry in Korea based on the types of national disasters as well as the types of hospitality business. The monthly data was collected from Jan. 2000 to Dec. 2016. The indexes of industrial production for each hospitality industry in Korea were used with the proxy variable for the performance of each hospitality industry. Two national disaster variables (natural disaster and social disaster) were treated as dummy variables. In addition, the exchange rate, industrial production index, and consumer price index were used as control variables in the research model. The impulse response analysis was used to examine the size and duration of the damages occurred from each type of national disaster on each type of hospitality industries. The results of this study show that the natural disaster and the social disaster differently influenced on each type of hospitality industry. More specifically, the performance of airline industry is negatively influenced by the natural disaster at the time of 3 months later from the incidence. However, the negative impacts of social disaster on airline industry occurred not significantly over the time periods. For the hotel industry, both natural disaster and social disaster negatively influence the performance of hotel industry at the time of 5 months and 6 months later, respectively. Also, the negative impact of natural disaster on the performance of restaurant industry occurred at the time of 5 months later, as well as for both 3 months and 6 months later for the social disaster. Finally, both natural disaster and social disaster negatively influence the performance of travel agency at the time of 3 months and 4 months later, respectively. In conclusion, the types of national disasters differently influence the performance of each type of hospitality industry in Korea. These results would provide an important information to establish the effective and efficient risk management strategy for the national disasters.Keywords: impulse response analysis, Korea, national disaster, performance of hospitality industry
Procedia PDF Downloads 184177 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 337176 The Potential Fresh Water Resources of Georgia and Sustainable Water Management
Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili
Abstract:
Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.Keywords: GIS, management, rivers, water resources
Procedia PDF Downloads 369175 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis
Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek
Abstract:
This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert
Procedia PDF Downloads 145174 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 232173 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication
Authors: Farhan A. Alenizi
Abstract:
Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing
Procedia PDF Downloads 160172 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence
Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai
Abstract:
The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing
Procedia PDF Downloads 252171 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong
Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong
Abstract:
Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island
Procedia PDF Downloads 73170 Tests for Zero Inflation in Count Data with Measurement Error in Covariates
Authors: Man-Yu Wong, Siyu Zhou, Zhiqiang Cao
Abstract:
In quality of life, health service utilization is an important determinant of medical resource expenditures on Colorectal cancer (CRC) care, a better understanding of the increased utilization of health services is essential for optimizing the allocation of healthcare resources to services and thus for enhancing the service quality, especially for high expenditure on CRC care like Hong Kong region. In assessing the association between the health-related quality of life (HRQOL) and health service utilization in patients with colorectal neoplasm, count data models can be used, which account for over dispersion or extra zero counts. In our data, the HRQOL evaluation is a self-reported measure obtained from a questionnaire completed by the patients, misreports and variations in the data are inevitable. Besides, there are more zero counts from the observed number of clinical consultations (observed frequency of zero counts = 206) than those from a Poisson distribution with mean equal to 1.33 (expected frequency of zero counts = 156). This suggests that excess of zero counts may exist. Therefore, we study tests for detecting zero-inflation in models with measurement error in covariates. Method: Under classical measurement error model, the approximate likelihood function for zero-inflation Poisson regression model can be obtained, then Approximate Maximum Likelihood Estimation(AMLE) can be derived accordingly, which is consistent and asymptotically normally distributed. By calculating score function and Fisher information based on AMLE, a score test is proposed to detect zero-inflation effect in ZIP model with measurement error. The proposed test follows asymptotically standard normal distribution under H0, and it is consistent with the test proposed for zero-inflation effect when there is no measurement error. Results: Simulation results show that empirical power of our proposed test is the highest among existing tests for zero-inflation in ZIP model with measurement error. In real data analysis, with or without considering measurement error in covariates, existing tests, and our proposed test all imply H0 should be rejected with P-value less than 0.001, i.e., zero-inflation effect is very significant, ZIP model is superior to Poisson model for analyzing this data. However, if measurement error in covariates is not considered, only one covariate is significant; if measurement error in covariates is considered, only another covariate is significant. Moreover, the direction of coefficient estimations for these two covariates is different in ZIP regression model with or without considering measurement error. Conclusion: In our study, compared to Poisson model, ZIP model should be chosen when assessing the association between condition-specific HRQOL and health service utilization in patients with colorectal neoplasm. and models taking measurement error into account will result in statistically more reliable and precise information.Keywords: count data, measurement error, score test, zero inflation
Procedia PDF Downloads 288169 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra
Authors: Amin Asgarian, Ghyslaine McClure
Abstract:
Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design
Procedia PDF Downloads 236168 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 136167 Evaluation of Antidiabetic Activity of a Combination Extract of Nigella Sativa & Cinnamomum Cassia in Streptozotocin Induced Type-I Diabetic Rats
Authors: Ginpreet Kaur, Mohammad Yasir Usmani, Mohammed Kamil Khan
Abstract:
Diabetes mellitus is a disease with a high global burden and results in significant morbidity and mortality. In India, the number of people suffering with diabetes is expected to rise from 19 to 57 million in 2025. At present, interest in herbal remedies is growing to reduce the side effects associated with conventional dosage form like oral hypoglycemic agents and insulin for the treatment of diabetes mellitus. Our aim was to investigate the antidiabetic activities of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats. Thus, the present study was undertaken to screen postprandial glucose excursion potential through α- glucosidase inhibitory activity (In Vitro) and effect of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats (In Vivo). In addition changes in body weight, plasma glucose, lipid profile and kidney profile were also determined. The IC50 values for both extract and Acarbose was calculated by extrapolation method. Combinatorial extract of N. sativa & C. cassia at different dosages (100 and 200 mg/kg orally) and Metformin (50 mg/kg orally) as the standard drug was administered for 28 days and then biochemical estimation, body weights and OGTT (Oral glucose tolerance test) were determined. Histopathological studies were also performed on kidney and pancreatic tissue. In In-Vitro the combinatorial extract shows much more inhibiting effect than the individual extracts. The results reveals that combinatorial extract of N. sativa & C. cassia has shown significant decrease in plasma glucose (p<0.0001), total cholesterol and LDL levels when compared with the STZ group The decreasing level of BUN and creatinine revealed the protection of N. sativa & C. cassia extracts against nephropathy associated with diabetes. Combination of N. sativa & C. cassia significantly improved glucose tolerance to exogenously administered glucose (2 g/kg) after 60, 90 and 120 min interval on OGTT in high dose streptozotocin induced diabetic rats compared with the untreated control group. Histopathological studies shown that treatment with N. sativa & C. cassia extract alone and in combination restored pancreatic tissue integrity and was able to regenerate the STZ damaged pancreatic β cells. Thus, the present study reveals that combination of N. sativa & C. cassia extract has significant α- glucosidase inhibitory activity and thus has great potential as a new source for diabetes treatment.Keywords: lipid levels, OGTT, diabetes, herbs, glucosidase
Procedia PDF Downloads 430166 Approach to Freight Trip Attraction Areas Classification, in Developing Countries
Authors: Adrián Esteban Ortiz-Valera, Angélica Lozano
Abstract:
In developing countries, informal trade is relevant, but it has been little studied in urban freight transport (UFT) context, although it is a challenge due to the non- contemplated demand it produces and the operational limitations it imposes. Hence, UFT operational improvements (initiatives) and freight attraction models must consider informal trade for developing countries. Afour phasesapproach for characterizing the commercial areas in developing countries (considering both formal and informal establishments) is proposed and applied to ten areas in Mexico City. This characterization is required to calculate real freight trip attraction and then select and/or adapt suitable initiatives. Phase 1 aims the delimitation of the study area. The following information is obtained for each establishment of a potential area: location or geographic coordinates, industrial sector, industrial subsector, and number of employees. Phase 2 characterizes the study area and proposes a set of indicators. This allows a broad view of the operations and constraints of UFT in the study area. Phase 3 classifies the study area according to seven indicators. Each indicator represents a level of conflict in the area due to the presence of formal (registered) and informal establishments on the sidewalks and streets, affecting urban freight transport (and other activities). Phase 4 determines preliminary initiatives which could be implemented in the study area to improve the operation of UFT. The indicators and initiatives relation allows a preliminary initiatives selection. This relation requires to know the following: a) the problems in the area (congested streets, lack of parking space for freight vehicles, etc.); b) the factors which limit initiatives due to informal establishments (reduced streets for freight vehicles; mobility and parking inability during a period, among others), c) the problems in the area due to its physical characteristics; and d) the factors which limit initiatives due to regulations of the area. Several differences in the study areas were observed. As the indicators increases, the areas tend to be less ordered, and the limitations for the initiatives become higher, causing a smaller number of susceptible initiatives. In ordered areas (similar to the commercial areas of developed countries), the current techniquesfor estimating freight trip attraction (FTA) can bedirectly applied, however, in the areas where the level of order is lower due to the presence of informal trade, this is not recommended because the real FTA would not be estimated. Therefore, a technique, which consider the characteristics of the areas in developing countries to obtain data and to estimate FTA, is required. This estimation can be the base for proposing feasible initiatives to such zones. The proposed approach provides a wide view of the needs of the commercial areas of developing countries. The knowledge of these needs would allow UFT´s operation to be improved and its negative impacts to be minimized.Keywords: freight initiatives, freight trip attraction, informal trade, urban freight transport
Procedia PDF Downloads 141165 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads
Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon
Abstract:
The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads
Procedia PDF Downloads 270164 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan
Authors: Ciwang Teyra, A. H. Y. Lai
Abstract:
Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.Keywords: microaggressions, intersectionality, indigenous population, mental health, social support
Procedia PDF Downloads 146163 Adapting an Accurate Reverse-time Migration Method to USCT Imaging
Authors: Brayden Mi
Abstract:
Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation
Procedia PDF Downloads 74162 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials
Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics
Abstract:
Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool
Procedia PDF Downloads 221161 Corporate Performance and Balance Sheet Indicators: Evidence from Indian Manufacturing Companies
Authors: Hussain Bohra, Pradyuman Sharma
Abstract:
This study highlights the significance of Balance Sheet Indicators on the corporate performance in the case of Indian manufacturing companies. Balance sheet indicators show the actual financial health of the company and it helps to the external investors to choose the right company for their investment and it also help to external financing agency to give easy finance to the manufacturing companies. The period of study is 2000 to 2014 for 813 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test and Hausman test results proof the suitability of the fixed effect model for the estimation. Return on assets (ROA) is used as the proxy to measure corporate performance. ROA is the best proxy to measure corporate performance as it already used by the most of the authors who worked on the corporate performance. ROA shows return on long term investment projects of firms. Different ratios like Current Ratio, Debt-equity ratio, Receivable turnover ratio, solvency ratio have been used as the proxies for the Balance Sheet Indicators. Other firm specific variable like firm size, and sales as the control variables in the model. From the empirical analysis, it was found that all selected financial ratios have significant and positive impact on the corporate performance. Firm sales and firm size also found significant and positive impact on the corporate performance. To check the robustness of results, the sample was divided on the basis of different ratio like firm having high debt equity ratio and low debt equity ratio, firms having high current ratio and low current ratio, firms having high receivable turnover and low receivable ratio and solvency ratio in the form of firms having high solving ratio and low solvency ratio. We find that the results are robust to all types of companies having different form of selected balance sheet indicators ratio. The results for other variables are also in the same line as for the whole sample. These findings confirm that Balance sheet indicators play as significant role on the corporate performance in India. The findings of this study have the implications for the corporate managers to focus different ratio to maintain the minimum expected level of performance. Apart from that, they should also maintain adequate sales and total assets to improve corporate performance.Keywords: balance sheet, corporate performance, current ratio, panel data method
Procedia PDF Downloads 264160 Analytical Study of the Structural Response to Near-Field Earthquakes
Authors: Isidro Perez, Maryam Nazari
Abstract:
Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.Keywords: near-field, pulse, pushover, time-history
Procedia PDF Downloads 146159 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 199158 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 128157 Scenario of Some Minerals and Impact of Promoter Hypermethylation of DAP-K Gene in Gastric Carcinoma Patients of Kashmir Valley
Authors: Showkat Ahmad Bhat, Iqra Reyaz, Falaque ul Afshan, Ahmad Arif Reshi, Muneeb U. Rehman, Manzoor R. Mir, Sabhiya Majid, Sonallah, Sheikh Bilal, Ishraq Hussain
Abstract:
Background: Gastric cancer is the fourth most common cancer and the second leading cause of worldwide cancer-related deaths, with a wide variation in incidence rates across different geographical areas. The current view of cancer is that a malignancy arises from a transformation of the genetic material of a normal cell, followed by successive mutations and by chain of alterations in genes such as DNA repair genes, oncogenes, Tumor suppressor genes. Minerals are necessary for the functioning of several transcriptional factors, proteins that recognize certain DNA sequences and have been found to play a role in gastric cancer. Material Methods:The present work was a case control study and its aim was to ascertain the role of minerals and promoter hypermethylation of CpG islands of DAP-K gene in Gastric cancer patients among the Kashmiri population. Serum was extracted from all the samples and mineral estimation was done by AAS from serum, DNA was also extracted and was modified using bisulphite modification kit. Methylation-specific PCR was used for the analysis of the promoter hypermethylation status of DAP-K gene. The epigenetic analysis revealed that unlike other high risk regions, Kashmiri population has a different promoter hypermethylation profile of DAP-K gene and has different mineral profile. Results: In our study mean serum copper levels were significantly different for the two genders (p<0.05), while as no significant differences were observed for iron and zinc levels. In Methylation-specific PCR the methylation status of the promoter region of DAP-K gene was as 67.50% (27/40) of the gastric cancer tissues showed methylated DAP-K promoter and 32.50% (13/40) of the cases however showed unmethylated DAP-K promoter. Almost all 85% (17/20) of the histopathologically confirmed normal tissues showed unmethylated DAP-K promoter except only in 3 cases where DAP-K promoter was found to be methylated. The association of promoter hypermethylation with gastric cancer was evaluated by χ2 (Chi square) test and was found to be significant (P=0.0006). Occurrence of DAP-K methylation was found to be unequally distributed in males and females with more frequency in males than in females but the difference was not statistically significant (P =0.7635, Odds ratio=1.368 and 95% C.I=0.4197 to 4.456). When the frequency of DAP-K promoter methylation was compared with clinical staging of the disease, DAP-K promoter methylation was found to be certainly higher in Stage III/IV (85.71%) compared to Stage I/ II (57.69%) but the difference was not statistically significant (P =0.0673). These results suggest that DAP-K aberrant promoter hypermethylation in Kashmiri population contributes to the process of carcinogenesis in Gastric cancer and is reportedly one of the commonest epigenetic changes in the development of Gastric cancer.Keywords: gastric cancer, minerals, AAS, hypermethylation, CpG islands, DAP-K gene
Procedia PDF Downloads 515156 Principal Well-Being at Hong Kong: A Quantitative Investigation
Authors: Junjun Chen, Yingxiu Li
Abstract:
The occupational well-being of school principals has played a vital role in the pursuit of individual and school wellness and success. However, principals’ well-being worldwide is under increasing threat because of the challenging and complex nature of their work and growing demands for school standardisation and accountability. Pressure is particularly acute in the post-pandemicfuture as principals attempt to deal with the impact of the pandemic on top of more regular demands. This is particularly true in Hong Kong, as school principals are increasingly wedged between unparalleled political, social, and academic responsibilities. Recognizing the semantic breadth of well-being, scholars have not determined a single, mutually agreeable definition but agreed that the concept of well-being has multiple dimensions across various disciplines. The multidimensional approach promises more precise assessments of the relationships between well-being and other concepts than the ‘affect-only’ approach or other single domains for capturing the essence of principal well-being. The multiple-dimension well-being concept is adopted in this project to understand principal well-being in this study. This study aimed to understand the situation of principal well-being and its influential drivers with a sample of 670 principals from Hong Kong and Mainland China. An online survey was sent to the participants after the breakout of COVID-19 by the researchers. All participants were well informed about the purposes and procedure of the project and the confidentiality of the data prior to filling in the questionnaire. Confirmatory factor analysis and structural equation modelling performed with Mplus were employed to deal with the dataset. The data analysis procedure involved the following three steps. First, the descriptive statistics (e.g., mean and standard deviation) were calculated. Second, confirmatory factor analysis (CFA) was used to trim principal well-being measurement performed with maximum likelihood estimation. Third, structural equation modelling (SEM) was employed to test the influential factors of principal well-being. The results of this study indicated that the overall of principal well-being were above the average mean score. The highest ranking in this study given by the principals was to their psychological and social well-being (M = 5.21). This was followed by spiritual (M = 5.14; SD = .77), cognitive (M = 5.14; SD = .77), emotional (M = 4.96; SD = .79), and physical well-being (M = 3.15; SD = .73). Participants ranked their physical well-being the lowest. Moreover, professional autonomy, supervisor and collegial support, school physical conditions, professional networking, and social media have showed a significant impact on principal well-being. The findings of this study will potentially enhance not only principal well-being, but also the functioning of an individual principal and a school without sacrificing principal well-being for quality education in the process. This will eventually move one step forward for a new future - a wellness society advocated by OECD. Importantly, well-being is an inside job that begins with choosing to have wellness, whilst supports to become a wellness principal are also imperative.Keywords: well-being, school principals, quantitative, influential factors
Procedia PDF Downloads 83155 A Mixed Method Approach for Modeling Entry Capacity at Rotary Intersections
Authors: Antonio Pratelli, Lorenzo Brocchini, Reginald Roy Souleyrette
Abstract:
A rotary is a traffic circle intersection where vehicles entering from branches give priority to circulating flow. Vehicles entering the intersection from converging roads move around the central island and weave out of the circle into their desired exiting branch. This creates merging and diverging conflicts among any entry and its successive exit, i.e., a section. Therefore, rotary capacity models are usually based on the weaving of the different movements in any section of the circle, and the maximum rate of flow value is then related to each weaving section of the rotary. Nevertheless, the single-section capacity value does not lead to the typical performance characteristics of the intersection, such as the entry average delay which is directly linked to its level of service. From another point of view, modern roundabout capacity models are based on the limitation of the flow entering from the single entrance due to the amount of flow circulating in front of the entrance itself. Modern roundabouts capacity models generally lead also to a performance evaluation. This paper aims to incorporate a modern roundabout capacity model into an old rotary capacity method to obtain from the latter the single input capacity and ultimately achieve the related performance indicators. Put simply; the main objective is to calculate the average delay of each single roundabout entrance to apply the most common Highway Capacity Manual, or HCM, criteria. The paper is organized as follows: firstly, the rotary and roundabout capacity models are sketched, and it has made a brief introduction to the model combination technique with some practical instances. The successive section is deserved to summarize the TRRL old rotary capacity model and the most recent HCM-7th modern roundabout capacity model. Then, the two models are combined through an iteration-based algorithm, especially set-up and linked to the concept of roundabout total capacity, i.e., the value reached due to a traffic flow pattern leading to the simultaneous congestion of all roundabout entrances. The solution is the average delay for each entrance of the rotary, by which is estimated its respective level of service. In view of further experimental applications, at this research stage, a collection of existing rotary intersections operating with the priority-to-circle rule has already started, both in the US and in Italy. The rotaries have been selected by direct inspection of aerial photos through a map viewer, namely Google Earth. Each instance has been recorded by location, general urban or rural, and its main geometrical patterns. Finally, conclusion remarks are drawn, and a discussion on some further research developments has opened.Keywords: mixed methods, old rotary and modern roundabout capacity models, total capacity algorithm, level of service estimation
Procedia PDF Downloads 86154 Trade in Value Added: The Case of the Central and Eastern European Countries
Authors: Łukasz Ambroziak
Abstract:
Although the impact of the production fragmentation on trade flows has been examined many times since the 1990s, the research was not comprehensive because of the limitations in traditional trade statistics. Early 2010s the complex databases containing world input-output tables (or indicators calculated on their basis) has made available. It increased the possibilities of examining the production sharing in the world. The trade statistic in value-added terms enables us better to estimate trade changes resulted from the internationalisation and globalisation as well as benefits of the countries from international trade. In the literature, there are many research studies on this topic. Unfortunately, trade in value added of the Central and Eastern European Countries (CEECs) has been so far insufficiently studied. Thus, the aim of the paper is to present changes in value added trade of the CEECs (Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia) in the period of 1995-2011. The concept 'trade in value added' or 'value added trade' is defined as the value added of a country which is directly and indirectly embodied in final consumption of another country. The typical question would be: 'How much value added is created in a country due to final consumption in the other countries?' The data will be downloaded from the World Input-Output Database (WIOD). The structure of this paper is as follows. First, theoretical and methodological aspects related to the application of the input-output tables in the trade analysis will be studied. Second, a brief survey of the empirical literature on this topic will be presented. Third, changes in exports and imports in value added of the CEECs will be analysed. A special attention will be paid to the differences in bilateral trade balances using traditional trade statistics (in gross terms) on one side, and value added statistics on the other. Next, in order to identify factors influencing value added exports and value added imports of the CEECs the generalised gravity model, based on panel data, will be used. The dependent variables will be value added exports and imports. The independent variables will be, among others, the level of GDP of trading partners, the level of GDP per capita of trading partners, the differences in GDP per capita, the level of the FDI inward stock, the geographical distance, the existence (or non-existence) of common border, the membership (or not) in preferential trade agreements or in the EU. For comparison, an estimation will also be made based on exports and imports in gross terms. The initial research results show that the gravity model better explained determinants of trade in value added than gross trade (R2 in the former is higher). The independent variables had the same direction of impact both on value added exports/imports and gross exports/imports. Only value of coefficients differs. The most difference concerned geographical distance. It had smaller impact on trade in value added than gross trade.Keywords: central and eastern European countries, gravity model, input-output tables, trade in value added
Procedia PDF Downloads 239153 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film
Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta
Abstract:
A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.Keywords: biosensor, reagentless, urea, ZnO-CuO composite
Procedia PDF Downloads 290152 Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System
Authors: Tamar Trop
Abstract:
Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities.Keywords: bike sharing, Envision™, sustainability rating system, sustainable infrastructure
Procedia PDF Downloads 340