Search results for: Wireless Sensor Networks (WSN)
1566 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1521565 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1651564 Automatic Measurement of Garment Sizes Using Deep Learning
Authors: Maulik Parmar, Sumeet Sandhu
Abstract:
The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints
Procedia PDF Downloads 3171563 Structural, Electrochemical and Electrocatalysis Studies of a New 2D Metal-Organic Coordination Polymer of Ni (II) Constructed by Naphthalene-1,4-Dicarboxylic Acid; Oxidation and Determination of Fructose
Authors: Zohreh Derikvand
Abstract:
One new 2D metal-organic coordination polymer of Ni(II) namely [Ni2(ndc)2(DMSO)4(H2O)]n, where ndc = naphthalene-1,4-dicarboxylic acid and DMSO= dimethyl sulfoxide has been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. Compound 1 possesses a 2D layer structure constructed from dinuclear nickel(II) building blocks in which two crystallographically independent Ni2+ ions are bridged by ndc2– ligands and water molecule. The ndc2– ligands adopt μ3 bridging modes, linking the metal centers into a two-dimensional coordination framework. The two independent NiII cations are surrounded by dimethyl sulfoxide and naphthalene-1,4-dicarboxylate molecules in distorted octahedron geometry. In the crystal structures of 1 there are non-classical hydrogen bonding arrangements and C-H–π stacking interactions. Electrochemical behavior of [Ni2(ndc)2(DMSO)4(H2O)]n, (Ni-NDA) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) was described. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). Oxidation of fructose on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) and the results showed that the Ni-NDA/CNTs film displays excellent electrochemical catalytic activities towards fructose oxidation.Keywords: naphthalene-1, 4-dicarboxylic acid, crystal structure, coordination polymer, electrocatalysis, impedance spectroscopy
Procedia PDF Downloads 3331562 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices
Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi
Abstract:
Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics
Procedia PDF Downloads 2121561 Sub-Pixel Mapping Based on New Mixed Interpolation
Authors: Zeyu Zhou, Xiaojun Bi
Abstract:
Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation
Procedia PDF Downloads 2361560 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods
Authors: Auday Al-Mayyahi, Phil Birch, William Wang
Abstract:
A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor
Procedia PDF Downloads 3041559 Evaluation of Interaction Between Fans and Celebrities in New Media
Authors: Mohadese Motahari
Abstract:
In general, we consider the phenomenon of "fandism" or extreme fandom to be an aspect of fandom for a person, a group, or a collection, which leads to extreme support for them. So, for example, we consider a fan or a "fanatic" (which literally means a "fanatical person") to be a person who is extremely interested in a certain topic or topics and has a special passion and fascination for that issue. It may also be beyond the scope of logic and normal behavior of the society. With the expansion of the media and the advancement of technology, the phenomenon of fandom also underwent many changes and not only became more intense, but a large economy was also formed alongside it, and it is becoming more and more important every day. This economy, which emerged from the past with the formation of the first media, has now taken a different form with the development of media and social networks, as well as the change in the interaction between celebrities and audiences. Earning huge amounts of money with special methods in every social network and every media is achieved through fans and fandoms. In this article, we have studied the relationship between fans and famous people with reference to the economic debates surrounding it.Keywords: fandism, famous people, social media, new media
Procedia PDF Downloads 931558 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2351557 Citation Analysis of New Zealand Court Decisions
Authors: Tobias Milz, L. Macpherson, Varvara Vetrova
Abstract:
The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.Keywords: case citation network, citation analysis, network analysis, Neo4j
Procedia PDF Downloads 1121556 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections
Authors: Ravneil Nand
Abstract:
Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse
Procedia PDF Downloads 3431555 Information in Public Domain: How Far It Measures Government's Accountability
Authors: Sandip Mitra
Abstract:
Studies on Governance and Accountability has often stressed the need to release Data in public domain to increase transparency ,which otherwise act as an evidence of performance. However, inefficient handling, lack of capacity and the dynamics of transfers (especially fund transfers) are important issues which need appropriate attention. E-Governance alone can not serve as a measure of transparency as long as a comprehensive planning is instituted. Studies on Governance and public exposure has often triggered public opinion in favour or against any government. The root of the problem (especially in local governments) lies in the management of the governance. The participation of the people in the local government functioning, the networks within and outside the locality, synergy with various layers of Government are crucial in understanding the activities of any government. Unfortunately, data on such issues are not released in the public domain .If they are at all released , the extraction of information is often hindered for complicated designs. A Study has been undertaken with a few local Governments in India. The data has been analysed to substantiate the views.Keywords: accountability, e-governance, transparency, local government
Procedia PDF Downloads 4391554 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis
Procedia PDF Downloads 3721553 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows
Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci
Abstract:
Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia
Procedia PDF Downloads 3181552 Compensation of Power Quality Disturbances Using DVR
Authors: R. Rezaeipour
Abstract:
One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic voltage restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using MATLAB software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.Keywords: DVR, power quality, voltage sags, voltage swells, flicker
Procedia PDF Downloads 3531551 Road Safety in the Great Britain: An Exploratory Data Analysis
Authors: Jatin Kumar Choudhary, Naren Rayala, Abbas Eslami Kiasari, Fahimeh Jafari
Abstract:
The Great Britain has one of the safest road networks in the world. However, the consequences of any death or serious injury are devastating for loved ones, as well as for those who help the severely injured. This paper aims to analyse the Great Britain's road safety situation and show the response measures for areas where the total damage caused by accidents can be significantly and quickly reduced. In this paper, we do an exploratory data analysis using STATS19 data. For the past 30 years, the UK has had a good record in reducing fatalities. The UK ranked third based on the number of road deaths per million inhabitants. There were around 165,000 accidents reported in the Great Britain in 2009 and it has been decreasing every year until 2019 which is under 120,000. The government continues to scale back road deaths empowering responsible road users by identifying and prosecuting the parameters that make the roads less safe.Keywords: road safety, data analysis, openstreetmap, feature expanding.
Procedia PDF Downloads 1441550 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 3741549 Measuring Organizational Resiliency for Flood Response in Thailand
Authors: Sudha Arlikatti, Laura Siebeneck, Simon A. Andrew
Abstract:
The objective of this research is to measure organizational resiliency through five attributes namely, rapidity, redundancy, resourcefulness, and robustness and to provide recommendations for resiliency building in flood risk communities. The research was conducted in Thailand following the severe floods of 2011 triggered by Tropical Storm Nock-ten. The floods lasted over eight months starting in June 2011 affecting 65 of the country’s 76 provinces and over 12 million people. Funding from a US National Science Foundation grant was used to collect ephemeral data in rural (Ayutthaya), suburban (Pathum Thani), and urban (Bangkok) provinces of Thailand. Semi-structured face-to-face interviews were conducted in Thai with 44 contacts from public, private, and non-profit organizations including universities, schools, automobile companies, vendors, tourist agencies, monks from temples, faith based organizations, and government agencies. Multiple triangulations were used to analyze the data by identifying selective themes from the qualitative data, validated with quantitative data and news media reports. This helped to obtain a more comprehensive view of how organizations in different geographic settings varied in their understanding of what enhanced or hindered their resilience and consequently their speed and capacities to respond. The findings suggest that the urban province of Bangkok scored highest in resourcefulness, rapidity of response, robustness, and ability to rebound. This is not surprising considering that it is the country’s capital and the seat of government, economic, military and tourism sectors. However, contrary to expectations all 44 respondents noted that the rural province of Ayutthaya was the fastest to recover amongst the three. Its organizations scored high on redundancy and rapidity of response due to the strength of social networks, a flood disaster sub-culture due to annual flooding, and the help provided by monks from and faith based organizations. Organizations in the suburban community of Pathum Thani scored lowest on rapidity of response and resourcefulness due to limited and ambiguous warnings, lack of prior flood experience and controversies that government flood protection works like sandbagging favored the capital city of Bangkok over them. Such a micro-level examination of organizational resilience in rural, suburban and urban areas in a country through mixed methods studies has its merits in getting a nuanced understanding of the importance of disaster subcultures and religious norms for resilience. This can help refocus attention on the strengths of social networks and social capital, for flood mitigation.Keywords: disaster subculture, flood response, organizational resilience, Thailand floods, religious beliefs and response, social capital and disasters
Procedia PDF Downloads 1621548 Decision-Making, Expectations and Life Project in Dependent Adults Due to Disability
Authors: Julia Córdoba
Abstract:
People are not completely autonomous, as we live in society; therefore, people could be defined as relationally dependent. The lack, decrease or loss of physical, psychological and/or social interdependence due to a disability situation is known as dependence. This is related to the need for help from another person in order to carry out activities of daily living. This population group lives with major social limitations that significantly reduce their participation and autonomy. They have high levels of stigma and invisibility from private environments (family and close networks), as well as from the public order (environment, community). The importance of this study lies in the fact that the lack of support and adjustments leads to what authors call the circle of exclusion. This circle describes how not accessing services - due to the difficulties caused by the disability situation impacts biological, social and psychological levels. This situation produces higher levels of exclusion and vulnerability. This study will focus on the process of autonomy and dependence of adults with disability from the model of disability proposed by the International Classification of Functioning, Health and Disability (ICF). The objectives are: i) to write down the relationship between autonomy and dependence based on socio-health variables and ii) to determine the relationship between the situation of autonomy and dependence and the expectations and interests of the participants. We propose a study that will use a survey technique through a previously validated virtual questionnaire. The data obtained will be analyzed using quantitative and qualitative methods for the details of the profiles obtained. No less than 200 questionnaires will be administered to people between 18 and 64 years of age who self-identify as having some degree of dependency due to disability. For the analysis of the results, the two main variables of autonomy and dependence will be considered. Socio-demographic variables such as age, gender identity, area of residence and family composition will be used. In relation to the biological dimension of the situation, the diagnosis, if any, and the type of disability will be asked. For the description of these profiles of autonomy and dependence, the following variables will be used: self-perception, decision-making, interests, expectations and life project, care of their health condition, support and social network, and labor and educational inclusion. The relationship between the target population and the variables collected provides several guidelines that could form the basis for the analysis of other research of interest in terms of self-perception, autonomy and dependence. The areas and situations where people state that they have greater possibilities to decide and have a say will be obtained. It will identify social (networks and support, educational background), demographic (age, gender identity and residence) and health-related variables (diagnosis and type of disability, quality of care) that may have a greater relationship with situations of dependency or autonomy. It will be studied whether the level of autonomy and/or dependence has an impact on the type of expectations and interests of the people surveyed.Keywords: life project, disability, inclusion, autonomy
Procedia PDF Downloads 711547 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1401546 Research on Intercity Travel Mode Choice Behavior Considering Traveler’s Heterogeneity and Psychological Latent Variables
Authors: Yue Huang, Hongcheng Gan
Abstract:
The new urbanization pattern has led to a rapid growth in demand for short-distance intercity travel, and the emergence of new travel modes has also increased the variety of intercity travel options. In previous studies on intercity travel mode choice behavior, the impact of functional amenities of travel mode and travelers’ long-term personality characteristics has rarely been considered, and empirical results have typically been calibrated using revealed preference (RP) or stated preference (SP) data. This study designed a questionnaire that combines the RP and SP experiment from the perspective of a trip chain combining inner-city and intercity mobility, with consideration for the actual condition of the Huainan-Hefei traffic corridor. On the basis of RP/SP fusion data, a hybrid choice model considering both random taste heterogeneity and psychological characteristics was established to investigate travelers’ mode choice behavior for traditional train, high-speed rail, intercity bus, private car, and intercity online car-hailing. The findings show that intercity time and cost exert the greatest influence on mode choice, with significant heterogeneity across the population. Although inner-city cost does not demonstrate a significant influence, inner-city time plays an important role. Service attributes of travel mode, such as catering and hygiene services, as well as free wireless network supply, only play a minor role in mode selection. Finally, our study demonstrates that safety-seeking tendency, hedonism, and introversion all have differential and significant effects on intercity travel mode choice.Keywords: intercity travel mode choice, stated preference survey, hybrid choice model, RP/SP fusion data, psychological latent variable, heterogeneity
Procedia PDF Downloads 1141545 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 511544 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system
Procedia PDF Downloads 1631543 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: augmented reality framework, server-client model, vision-based tracking, image search
Procedia PDF Downloads 2791542 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles
Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose
Abstract:
The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics
Procedia PDF Downloads 1221541 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array
Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling
Abstract:
DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array
Procedia PDF Downloads 3711540 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors
Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.
Abstract:
In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.Keywords: hand gestures, multiple cables, serial communication, sms notification
Procedia PDF Downloads 741539 Ontologies for Social Media Digital Evidence
Authors: Edlira Kalemi, Sule Yildirim-Yayilgan
Abstract:
Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.Keywords: criminal digital evidence, social media, ontologies, reasoning
Procedia PDF Downloads 3931538 Characterization of Internet Exchange Points by Using Quantitative Data
Authors: Yamba Dabone, Tounwendyam Frédéric Ouedraogo, Pengwendé Justin Kouraogo, Oumarou Sie
Abstract:
Reliable data transport over the Internet is one of the goals of researchers in the field of computer science. Data such as videos and audio files are becoming increasingly large. As a result, transporting them over the Internet is becoming difficult. Therefore, it has been important to establish a method to locally interconnect autonomous systems (AS) with each other to facilitate traffic exchange. It is in this context that Internet Exchange Points (IXPs) are set up to facilitate local and even regional traffic. They are now the lifeblood of the Internet. Therefore, it is important to think about the factors that can characterize IXPs. However, other more quantifiable characteristics can help determine the quality of an IXP. In addition, these characteristics may allow ISPs to have a clearer view of the exchange node and may also convince other networks to connect to an IXP. To that end, we define five new IXP characteristics: the attraction rate (τₐₜₜᵣ); and the peering rate (τₚₑₑᵣ); the target rate of an IXP (Objₐₜₜ); the number of IXP links (Nₗᵢₙₖ); the resistance rate τₑ𝒻𝒻 and the attraction failure rate (τ𝒻).Keywords: characteristic, autonomous system, internet service provider, internet exchange point, rate
Procedia PDF Downloads 1011537 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence
Procedia PDF Downloads 456