Search results for: VOF multiphase model
14089 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth
Authors: Ella Tyuryumina, Alexey Neznanov
Abstract:
Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival
Procedia PDF Downloads 33514088 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method
Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk
Abstract:
In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS
Procedia PDF Downloads 20514087 Mechanisms for the Art of Food: Tourism with Thainess and a Multi-Stakeholder Participation Approach
Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul
Abstract:
Food could be used to open up a dialogue about local heritage. Contributing to the world sustainable consumption mission, this research aims to explore the linkages between agriculture, senses of place and performing arts. Thailand and its destination marketing ‘Discover Thainess’ was selected as a working principle, enabling a case example of how the three elements could be conceptualized. The model offered an integrated institutional arrangement where diverse entities could be formed to design how Thainess (local heritage) could be interpreted and embedded into an art of food. Using case study research approach, three areas (Chiangmai, Samutsongkram and Ban Rai Gong King) representing 3 different scales of tourism development were selected. Based on a theoretical analysis, a working model was formulated. An action research was then designed to experiment how the model could be materialized. Brainstorming elicitation and in-depth interview were employed to reflect on how each element could be integrated. The result of this study offered an innovation on how food tourism could be profoundly interpreted and how tourism development could enhance value creation for agricultural based community. The outcomes of the research present co-creative multi-stakeholder model and the value creation method through the whole supply chain of Thai gastronomy. The findings have been eventually incorporated into ‘gastro-diplomacy’ strategy for Thai tourism.Keywords: community-based tourism, gastro-diplomacy, gastronomy tourism, sustainable tourism development
Procedia PDF Downloads 30814086 Temporal Migration and Community Development in Rural Indonesia
Authors: Gunawan Prayitno, Kakuya Matshusima, Kiyoshi Kobayashi
Abstract:
Indonesia’s rural regions are characterized by wide-spread poverty, under-employment, and surplus of low-skilled labor. The aim of this paper is to empirically prove the effect of social ties (strong and weak tie) as social capital construct on households’ migration decision in the case of developing country (Indonesia). The methodology incorporated indicators of observe variables (four demographic attributes data: income, occupation, education, and family members) and indicators of latent variables (ties to neighbors, ties to community and sense of place) provided by responses to survey questions to aid in estimating the model. Using structural equation model that we employed in Mplus program, the result of our study shows that ties to community positively have a significant impact to the decision of respondents (migrate or not). Besides, education as observed variable directly influences the migration decisions. It seems that higher level of education have impact on migration decision. Our current model so far could explain the relation between social capital and migration decision choice.Keywords: migration, ties to community, ties to neighbors, education
Procedia PDF Downloads 32314085 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production
Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana
Abstract:
Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology
Procedia PDF Downloads 36614084 Determinants of Smallholder Farmers' Intention to Adopt Jatropha as Raw Material for Biodiesel Production: A Proposed Model for Nigeria
Authors: Abdulsalam Mas’ud
Abstract:
Though Nigerian Biofuel Policy and Incentive was introduced in 2007, however, little if any is known about the impact of such policy for biodiesel development in Nigeria. It can be argued that lack of raw materials is one of the important factors that hinder the proper implementation of the policy. In line with this argument, this study aims to explore the determinants of smallholder farmers’ intention to adopt Jatropha as raw materials for biodiesel development in northern Nigeria, with Jigawa State as area of study. The determinants proposed for investigation covers personal factors, physical factors, institutional factors, economic factors, risk and uncertainty factors as well as social factors. The validation of the proposed model will have the implication of guiding policymakers towards enhancement of farmers’ participation in the Jatropha project for biodiesel raw materials production. The eventual byproducts of the proposed model validation and implementation will be employment generation, poverty reduction, combating dessert encroachment, economic diversification to renewable energy sources and electricity generation.Keywords: adoption, biodiesel, factors, jatropha
Procedia PDF Downloads 31014083 Factors Affecting Students' Attitude to Adapt E-Learning: A Case from Iran How to Develop Virtual Universities in Iran: Using Technology Acceptance Model
Authors: Fatemeh Keivanifard
Abstract:
E-learning is becoming increasingly prominent in higher education, with universities increasing provision and more students signing up. This paper examines factors that predict students' attitudes to adapt e-learning at the Khuzestan province Iran. Understanding the nature of these factors may assist these universities in promoting the use of information and communication technology in teaching and learning. The main focus of the paper is on the university students, whose decision supports effective implementation of e-learning. Data was collected through a survey of 300 post graduate students at the University of dezful, shooshtar and chamran in Khuzestan. The technology adoption model put forward by Davis is utilized in this study. Two more independent variables are added to the original model, namely, the pressure to act and resources availability. The results show that there are five factors that can be used in modeling students' attitudes to adapt e-learning. These factors are intention toward e-learning, perceived usefulness of e-learning, perceived ease of e-learning use, pressure to use e-learning, and the availability of resources needed to use e-learning.Keywords: e-learning, intention, ease of use, pressure to use, usefulness
Procedia PDF Downloads 36814082 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 7714081 Comparative Study of the Earth Land Surface Temperature Signatures over Ota, South-West Nigeria
Authors: Moses E. Emetere, M. L. Akinyemi
Abstract:
Agricultural activities in the South–West Nigeria are mitigated by the global increase in temperature. The unpredictive surface temperature of the area had increased health challenges amongst other social influence. The satellite data of surface temperatures were compared with the ground station Davis weather station. The differential heating of the lower atmosphere were represented mathematically. A numerical predictive model was propounded to forecast future surface temperature.Keywords: numerical predictive model, surface temperature, satellite date, ground data
Procedia PDF Downloads 47414080 Cloud Enterprise Application Provider Selection Model for the Small and Medium Enterprise: A Pilot Study
Authors: Rowland R. Ogunrinde, Yusmadi Y. Jusoh, Noraini Che Pa, Wan Nurhayati W. Rahman, Azizol B. Abdullah
Abstract:
Enterprise Applications (EAs) aid the organizations achieve operational excellence and competitive advantage. Over time, most Small and Medium Enterprises (SMEs), which are known to be the major drivers of most thriving global economies, use the costly on-premise versions of these applications thereby making business difficult to competitively thrive in the same market environment with their large enterprise counterparts. The advent of cloud computing presents the SMEs an affordable offer and great opportunities as such EAs can be cloud-hosted and rented on a pay-per-use basis which does not require huge initial capital. However, as there are numerous Cloud Service Providers (CSPs) offering EAs as Software-as-a-Service (SaaS), there is a challenge of choosing a suitable provider with Quality of Service (QoS) that meet the organizations’ customized requirements. The proposed model takes care of that and goes a step further to select the most affordable among a selected few of the CSPs. In the earlier stage, before developing the instrument and conducting the pilot test, the researchers conducted a structured interview with three experts to validate the proposed model. In conclusion, the validity and reliability of the instrument were tested through experts, typical respondents, and analyzed with SPSS 22. Results confirmed the validity of the proposed model and the validity and reliability of the instrument.Keywords: cloud service provider, enterprise application, quality of service, selection criteria, small and medium enterprise
Procedia PDF Downloads 17914079 Citizens’ Readiness to Adopt and Use Electronic Voting System in Ghana
Authors: Isaac Kofi Mensah
Abstract:
The adoption and application of Information and Communication Technologies (ICTs) in government administration through e-government is expected to permeate all sectors of state/ public institutions as well as democratic institutions. One of such public institutions is the Electoral Commission of Ghana mandated by the 1992 Constitution to hold all public elections including presidential and parliamentary elections. As Ghana holds its 7th General Elections since 1992, on 7th November 2016, there are demands from key stakeholders for the Election Management Body, which is the Electoral Commission (EC) of Ghana to adopt and implement an electronic voting system. This case study, therefore, attempts to contribute significantly to the debate by examining influencing factors that would impact on citizen’s readiness to adopt and use an electronic voting system in Ghana. The Technology Acceptance Model (TAM) was used as a theoretical framework for this study, out of which a research model and hypotheses were developed. Importantly, the outcome of this research finding would form a basis for appropriate policy recommendation for consideration of Government and EC of Ghana.Keywords: citizens readiness, e-government, electronic voting, technology acceptance model (TAM)
Procedia PDF Downloads 26614078 A Study on the Influence of Pin-Hole Position Error of Carrier on Mesh Load and Planet Load Sharing of Planetary Gear
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Gang Shen
Abstract:
For planetary gear system, Planet pin-hole position accuracy is one of most influential factor to efficiency and reliability of planetary gear system. This study considers planet pin-hole position error as a main input error for model and build multi body dynamic simulation model of planetary gear including planet pin-hole position error using MSC. ADAMS. From this model, the mesh load results between meshing gears in each pin-hole position error cases are obtained and based on these results, planet load sharing factor which reflect equilibrium state of mesh load sharing between whole meshing gear pair is calculated. Analysis result indicates that the pin-hole position error of tangential direction cause profound influence to mesh load and load sharing factor between meshing gear pair.Keywords: planetary gear, load sharing factor, multibody dynamics, pin-hole position error
Procedia PDF Downloads 57914077 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals
Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi
Abstract:
Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition
Procedia PDF Downloads 40614076 Feasibility of Using Bike Lanes in Conjunctions with Sidewalks for Ground Drone Applications in Last Mile Delivery for Dense Urban Areas
Authors: N. Bazyar Shourabi, K. Nyarko, C. Scott, M. Jeihnai
Abstract:
Ground drones have the potential to reduce the cost and time of making last-mile deliveries. They also have the potential to make a huge impact on human life. Despite this potential, little work has gone into developing a suitable feasibility model for ground drone delivery in dense urban areas. Today, most of the experimental ground delivery drones utilize sidewalks only, with just a few of them starting to use bike lanes, which a significant portion of some urban areas have. This study works on the feasibility of using bike lanes in conjunction with sidewalks for ground drone applications in last-mile delivery for dense urban areas. This work begins with surveying bike lanes and sidewalks within the city of Boston using Geographic Information System (GIS) software to determine the percentage of coverage currently available within the city. Then six scenarios are examined. Based on this research, a mathematical model is developed. The daily cost of delivering packages using each scenario is calculated by the mathematical model. Comparing the drone delivery scenarios with the traditional method of package delivery using trucks will provide essential information concerning the feasibility of implementing routing protocols that combine the use of sidewalks and bike lanes. The preliminary results of the model show that ground drones that can travel via sidewalks or bike lanes have the potential to significantly reduce delivery cost.Keywords: ground drone, intelligent transportation system, last-mile delivery, sidewalk robot
Procedia PDF Downloads 14414075 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria
Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi
Abstract:
In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters
Procedia PDF Downloads 50314074 Exergy Model for a Solar Water Heater with Flat Plate Collector
Authors: P. Sathyakala, G. Sai Sundara Krishnan
Abstract:
The objective of this paper is to derive an exergy model for a solar water heater with honey comb structure in order to identify the element which has larger irreversibility in the system. This will help us in finding the means to reduce the wasted work potential so that the overall efficiency of the system can be improved by finding the ways to reduce those wastages.Keywords: exergy, energy balance, entropy balance, work potential, degradation, honey comb, flat plate collector
Procedia PDF Downloads 47814073 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 21114072 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 29414071 Optimisation Model for Maximising Social Sustainability in Construction Scheduling
Authors: Laura Florez
Abstract:
The construction industry is labour intensive, and the behaviour and management of workers have a direct impact on the performance of construction projects. One of the issues it currently faces is how to recruit and maintain its workers. Construction is known as an industry where workers face the problem of short employment durations, frequent layoffs, and periods of unemployment between jobs. These challenges not only creates pressures on the workers but also project managers have to constantly train new workers, face skills shortage, and uncertainty on the quality of the workers it will attract. To consider worker’s needs and project managers expectations, one practice that can be implemented is to schedule construction projects to maintain a stable workforce. This paper proposes a mixed integer programming (MIP) model to schedule projects with the objective of maximising social sustainability of construction projects, that is, maximise labour stability. Aside from the social objective, the model accounts for equipment and financial resources required by the projects during the construction phase. To illustrate how the solution strategy works, a construction programme comprised of ten projects is considered. The projects are scheduled to maximise labour stability while simultaneously minimising time and minimising cost. The tradeoff between the values in terms of time, cost, and labour stability allows project managers to consider their preferences and identify which solution best suits their needs. Additionally, the model determines the optimal starting times for each of the projects, working patterns for the workers, and labour costs. This model shows that construction projects can be scheduled to not only benefit the project manager, but also benefit current workers and help attract new workers to the industry. Due to its practicality, it can be a valuable tool to support decision making and assist construction stakeholders when developing schedules that include social sustainability factors.Keywords: labour stability, mixed-integer programming (MIP), scheduling, workforce management
Procedia PDF Downloads 25314070 Cobalt Ions Adsorption by Quartz and Illite and Calcite from Waste Water
Authors: Saad A. Aljlil
Abstract:
Adsorption of cobalt ions on quartz and illite and calcite from waste water was investigated. The effect of pH on the adsorption of cobalt ions was studied. The maximum capacities of cobalt ions of the three adsorbents increase with increasing cobalt solution temperature. The maximum capacities were (4.66) mg/g for quartz, (3.94) mg/g for illite, and (3.44) mg/g for calcite. The enthalpy, Gibbs free energy, and entropy for adsorption of cobalt ions on the three adsorbents were calculated. It was found that the adsorption process of the cobalt ions of the adsorbent was an endothermic process. consequently increasing the temperature causes the increase of the cobalt ions adsorption of the adsorbents. Therefore, the adsorption process is preferred at high temperature levels. The equilibrium adsorption data were correlated using Langmuir model, Freundlich model. The experimental data of cobalt ions of the adsorbents correlated well with Freundlich model.Keywords: adsorption, Langmuir, Freundlich, quartz, illite, calcite, waste water
Procedia PDF Downloads 37214069 A Theoretical Model for Pattern Extraction in Large Datasets
Authors: Muhammad Usman
Abstract:
Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.Keywords: association rule mining, data mining, data warehouses, visualization of association rules
Procedia PDF Downloads 22314068 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field
Authors: Buruk Kitachew Wossenyeleh
Abstract:
Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation
Procedia PDF Downloads 15214067 Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model
Authors: F. Esfandyari Darabad, Z. Samadi
Abstract:
The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation.Keywords: curve number, khiyav river basin, runoff estimation, SCS
Procedia PDF Downloads 62214066 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 47414065 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens
Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu
Abstract:
A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.Keywords: ball lens, quadrant detector, axial error, radial error
Procedia PDF Downloads 47314064 Energy Conservation and H-Theorem for the Enskog-Vlasov Equation
Authors: Eugene Benilov, Mikhail Benilov
Abstract:
The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.Keywords: Enskog collision integral, hard spheres, kinetic equation, phase transition
Procedia PDF Downloads 15314063 Interaction Tasks of CUE Model in Virtual Language Learning in Travel English for Taiwanese College EFL Learners
Authors: Kuei-Hao Li, Eden Huang
Abstract:
Motivation suggests the willingness one person has towards taking action. Learners’ motivation has frequently been regarded as the most crucial factor in successful language acquisition. Without sufficient motivation, learners cannot achieve long-term learning goals despite remarkable abilities. Therefore, the study aims to investigate motivation of interaction tasks designed by the researchers for college EFL learners in Travel English class in virtual reality environment, integrating CUE model, Cognition, Usage and Expansion in the course. Thirty college learners were asked to join the virtual language learning website designed by the researchers. Data was collected via feedback questionnaire, interview, and learner interactions. The findings indicated that the course in the CUE model in language learning website of virtual reality environment was effective at motivating EFL learners and improving their oral communication and social interactions in the learning process. Some pedagogical implications are also provided in helping both language instructors and EFL learners in virtual reality environment.Keywords: motivation, virtual reality, virtual language learning, second language acquisition
Procedia PDF Downloads 39114062 New Approach in Sports Management of Great Sports Events
Authors: Taieb Kherafa Noureddine
Abstract:
The paper presents a new approach regarding the management in sports that is based on the principles of reengineering. Applying that modern and pure management system, called reengineering, in sports activity, we hope to get better and better results, in order to increase both the health state and the performances of trained athletes. The paper also presents the similarities between BPR (Business Process Reengineering) and sports managements, as well as the proposed solution for a proper implementation of such model of management. The five components of the basic BPR model are presented, together with their features for sports management.Keywords: business process reengineering, great sports events, sports management, training activities
Procedia PDF Downloads 49214061 Designing Effective Serious Games for Learning and Conceptualization Their Structure
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.Keywords: game development, game design, requirements, serious games, serious game model.
Procedia PDF Downloads 6214060 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 48