Search results for: 3D Models
3995 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve
Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao
Abstract:
An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing
Procedia PDF Downloads 3093994 Testing the Validity of Feldstein-Horioka Puzzle in BRICS Countries
Authors: Teboho J. Mosikari, Johannes T. Tsoku, Diteboho L. Xaba
Abstract:
The increase of capital mobility across emerging economies has become an interesting topic for many economic policy makers. The current study tests the validity of Feldstein–Horioka puzzle for 5 BRICS countries. The sample period of the study runs from 2001 to 2014. The study uses the following parameter estimates well known as the Fully Modified OLS (FMOLS), and Dynamic OLS (DOLS). The results of the study show that investment and savings are cointegrated in the long run. The parameters estimated using FMOLS and DOLS are 0.85 and 0.74, respectively. These results imply that policy makers within BRICS countries have to consider flexible monetary and fiscal policy instruments to influence the mobility of capital with the bloc.Keywords: Feldstein and Horioka puzzle, saving and investment, panel models, BRICS countries
Procedia PDF Downloads 2593993 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 2933992 Modeling Generalization in the Acquired Equivalence Paradigm with the Successor Representation
Authors: Troy M. Houser
Abstract:
The successor representation balances flexible and efficient reinforcement learning by learning to predict the future, given the present. As such, the successor representation models stimuli as what future states they lead to. Therefore, two stimuli that are perceptually dissimilar but lead to the same future state will come to be represented more similarly. This is very similar to an older behavioral paradigm -the acquired equivalence paradigm, which measures the generalization of learned associations. Here, we test via computational modeling the plausibility that the successor representation is the mechanism by which people generalize knowledge learned in the acquired equivalence paradigm. Computational evidence suggests that this is a plausible mechanism for acquired equivalence and thus can guide future empirical work on individual differences in associative-based generalization.Keywords: acquired equivalence, successor representation, generalization, decision-making
Procedia PDF Downloads 293991 Policy Implications of Demographic Impacts on COVID-19, Pneumonia, and Influenza Mortality: A Multivariable Regression Approach to Death Toll Reduction
Authors: Saiakhil Chilaka
Abstract:
Understanding the demographic factors that influence mortality from respiratory diseases like COVID-19, pneumonia, and influenza is crucial for informing public health policy. This study utilizes multivariable regression models to assess the relationship between state, sex, and age group on deaths from these diseases using U.S. data from 2020 to 2023. The analysis reveals that age and sex play significant roles in mortality, while state-level variations are minimal. Although the model’s low R-squared values indicate that additional factors are at play, this paper discusses how these findings, in light of recent research, can inform future public health policy, resource allocation, and intervention strategies.Keywords: COVID-19, multivariable regression, public policy, data science
Procedia PDF Downloads 233990 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3723989 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 583988 Stochastic Default Risk Estimation Evidence from the South African Financial Market
Authors: Mesias Alfeus, Kirsty Fitzhenry, Alessia Lederer
Abstract:
The present paper provides empirical studies to estimate defaultable bonds in the South African financial market. The main goal is to estimate the unobservable factors affecting bond yields for South African major banks. The maximum likelihood approach is adopted for the estimation methodology. Extended Kalman filtering techniques are employed in order to tackle the situation that the factors cannot be observed directly. Multi-dimensional Cox-Ingersoll-Ross (CIR)-type factor models are considered. Results show that default risk increased sharply in the South African financial market during COVID-19 and the CIR model with jumps exhibits a better performance.Keywords: default intensity, unobservable state variables, CIR, α-CIR, extended kalman filtering
Procedia PDF Downloads 1133987 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test
Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou
Abstract:
The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending
Procedia PDF Downloads 1523986 The Bloom of 3D Printing in the Health Care Industry
Authors: Mihika Shivkumar, Krishna Kumar, C. Perisamy
Abstract:
3D printing is a method of manufacturing wherein materials, such as plastic or metal, are deposited in layers one on top of the other to produce a three dimensional object. 3D printing is most commonly associated with creating engineering prototypes. However, its applications in the field of human health care have been frequently disregarded. Medical applications for 3D printing are expanding rapidly and are envisaged to revolutionize health care. Medical applications for 3D printing, both present and its potential, can be categorized broadly, including: creation of customized prosthetics tissue and organ fabrication; creation of implants, and anatomical models and pharmaceutical research regarding drug dosage forms. This piece breaks down bioprinting in the healthcare sector. It focuses on the better subtle elements of every particular point, including how 3D printing functions in the present, its impediments, and future applications in the health care sector.Keywords: bio-printing, prototype, drug delivery, organ regeneration
Procedia PDF Downloads 2723985 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.Keywords: palm oil, fatty acid, NIRS, PLSR
Procedia PDF Downloads 2093984 The Importance of Electronic Medical Record Systems in Health Care Economics
Authors: Mutaz Shurahabeel Ahmed Ombada
Abstract:
This paper investigates potential health and financial settlement of health information technology, this paper evaluates health care with the use of IT and other associated industries. It assesses prospective savings and costs of extensive acceptance of Electronic Medical Record Systems (EMRS), models significant to health as well as safety remuneration, and conclude that efficient EMRS execution and networking could ultimately save more than US $55 billion annually through recuperating health care effectiveness and that Health Information Technology -enabled prevention and administration of chronic disease could eventually double those savings while rising health and other social remuneration. On the contrary, this is improbable to be realized without related to significant modifications to the health care system.Keywords: electronic medical record systems, health care economics, EMRS
Procedia PDF Downloads 5643983 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 1583982 Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling
Authors: Yamileth P. Herrera, Ronald R. Gutierrez, Carlos, Pacheco-Bustos
Abstract:
This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs.Keywords: contact tank, numerical models, hydrodynamic modeling, residence time
Procedia PDF Downloads 1683981 Review of Speech Recognition Research on Low-Resource Languages
Authors: XuKe Cao
Abstract:
This paper reviews the current state of research on low-resource languages in the field of speech recognition, focusing on the challenges faced by low-resource language speech recognition, including the scarcity of data resources, the lack of linguistic resources, and the diversity of dialects and accents. The article reviews recent progress in low-resource language speech recognition, including techniques such as data augmentation, end to-end models, transfer learning, and multi-task learning. Based on the challenges currently faced, the paper also provides an outlook on future research directions. Through these studies, it is expected that the performance of speech recognition for low resource languages can be improved, promoting the widespread application and adoption of related technologies.Keywords: low-resource languages, speech recognition, data augmentation techniques, NLP
Procedia PDF Downloads 183980 Africa’s Political and Economic Transformation and the Role of the Disporas
Authors: Noah Yusuf
Abstract:
The present paper examined the current level of socio-political and economic development in Africa. Models and experiences from other regions of the world, especially, developing ones with similar historical experience with Africa, were explored. The paper concluded that recommendations emanating from past conferences, seminars and symposia on the continent’s socio-economic and political challenges have been poorly implemented because of lack of strong political will; the donor syndrome; weak resource base; capacity constraints in institutions; and lack of accountability, transparency and poor governance. It is, therefore, recommended that African countries need implement sound policies and reforms on a comprehensive basis, if they are to achieve the desired socio-economic and political transformation; and the African in Diasporas represent critical instruments in attaining the socio-economic and political objectives of the continent.Keywords: Africa, political transformation, economic transformation, Africans in diasporas
Procedia PDF Downloads 3473979 The Role of Self-Compassion for the Diagnosis of Social Anxiety Disorder in Adolescents
Authors: Diana Vieira Figueiredo, Rita Ramos Miguel, Maria do Céu Salvador, Luiza Nobre-Lima, Daniel RIjo, Paula Vagos
Abstract:
Social Anxiety Disorder (SAD) is characterized by a marked and persistent fear of social and/or performance situations in which one may be exposed to the scrutiny of others. SAD has its usual onset and is highly prevalent during adolescence; if left untreated, it often has a chronic and unremitting course. So, it seems important to understand the psychological processes that might predict the development of SAD. One of these processes may be self-compassion, which has been found to be associated with social anxiety in both adults and adolescents. Self-compassion involves three main components, each with a positive (compassionate behavior) and negative (uncompassionate behavior) pole – self-kindness versus self-judgment, common humanity versus isolation, and mindfulness versus over-identification. The negative indicators of self-compassion (self-judgement, isolation, and over-identification) were found to be more strongly linked to mental health problems than the positive indicators (self-kindness, common humanity, and mindfulness). Additionally, negative associations were found between the positive indicators of self-compassion (self-kindness, common humanity, mindfulness) and psychopathology. The current study aimed to investigate the role of self-kindness, self-judgment, common humanity, isolation, mindfulness, and over-identification in the likelihood of an adolescent presenting SAD by comparing groups of normative and socially anxious adolescents. The sample consisted of 32 adolescents (Mage = 15.88, SD = .833) of which 23 were girls. Adolescents were assessed through a clinical structured interview that led 17 to be assigned to the clinical group (presenting a primary diagnosis of SAD) and 15 to be assigned to the non-clinical group (presenting no clinical diagnosis). Variables under study were measured through the Self-Compassion Scale for adolescents (SCS-A), which assesses the six indicators of self-compassion presented above. Six separate models were tested, each with one of the subscales of the SCS-A as the independent variable and with the group (clinical versus non-clinical) as the dependent variable. The models considering isolation, over-identification, self-judgement, and self-kindness fitted the data and accurately predicted group belonging for between 75% to 84.4% of cases. Results indicated that the log of the odds of an adolescent presenting SAD was positively related to isolation, over-identification, and self-judgement and negatively associated with self-kindness. Findings provide support for the idea that decreased self-compassion may place adolescents at increased risk for experiencing clinical levels of social anxiety: on the one hand, adolescents with higher levels of isolation, over-identification, and self-judgement seem to be more prone to the development of psychopathological levels of social anxiety; on the other hand, self-kindness may play a protective role in the development of SAD in this developmental phase. So, if focusing on social feared consequences and perceiving to be different from others may be distinctive features of SAD, developing self-kindness may be the antidote to promote diminished levels of social anxiety and more.Keywords: adolescents, social anxiety disorder, self-compassion, diagnosis odds-ration
Procedia PDF Downloads 1593978 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology
Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi
Abstract:
This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance
Procedia PDF Downloads 1323977 In vivo Wound Healing Activity and Phytochemical Screening of the Crude Extract and Various Fractions of Kalanchoe petitiana A. Rich (Crassulaceae) Leaves in Mice
Authors: Awol Mekonnen, Temesgen Sidamo, Epherm Engdawork, Kaleab Asresb
Abstract:
Ethnopharmacological Relevance: The leaves of Kalanchoe petitiana A. Rich (Crassulaceae) are used in Ethiopian folk medicine for treatment of evil eye, fractured surface for bone setting and several skin disorders including for the treatment of sores, boils, and malignant wounds. Aim of the Study: In order to scientifically prove the claimed utilization of the plant, the effects of the extracts and the fractions were investigated using in vivo excision, incision and dead space wound models. Materials and Method: Mice were used for wound healing study, while rats and rabbit were used for skin irritation test. For studying healing activity, 80% methanolic extract and the fractions were formulated in strength of 5% and 10%, either as ointment (hydroalcoholic extract, aqueous and methanol fractions) or gel (chloroform fraction). Oral administration of the crude extract was used for dead space model. Negative controls were treated either with simple ointment or sodium carboxyl methyl cellulose xerogel, while positive controls were treated with nitrofurazone (0.2 w/v) skin ointment. Negative controls for dead space model were treated with 1% carboxy methyl cellulose. Parameters, including rate of wound contraction, period of complete epithelializtion, hydroxyproline contents and skin breaking strength were evaluated. Results: Significant wound healing activity was observed with ointment formulated from the crude extract at both 5% and 10% concentration (p<0.01) compared to controls in both excision and incision models. In dead space model, 600 mg/kg (p<0.01), but not 300 mg/kg, significantly increased hydroxyproline content. Fractions showed variable effect, with the chloroform fraction lacking any significant effect. Both 5% and 10% formulations of the aqueous and methanolic fractions significantly increased wound contraction, decreased epithelializtion time and increased hydroxyproline content in excision wound model (p<0.05) as compared to controls. These fractions were also endowed with higher skin breaking strength in incision wound model (p<0.01). Conclusions: The present study provided evidence that the leaves of Kalanchoe petitiana A. Rich possess remarkable wound healing activities supporting the folkloric assertion of the plant. Fractionation revealed that polar or semi-polar compound may play vital role, as both aqueous and methanolic fractions were endowed with wound healing activity.Keywords: wound healing, Kalanchoae petitiana, excision wound, incision wound, dead space model
Procedia PDF Downloads 3113976 Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application
Authors: Jihoon Park, Sungkon Yu, Byungjo Jung
Abstract:
Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale.Keywords: blood vessel, optical tissue phantom, optical property, skin tissue, pigmentation
Procedia PDF Downloads 4583975 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned
Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh
Abstract:
This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.Keywords: activity-based costing, activity-based management, construction, architectural aluminum
Procedia PDF Downloads 1043974 Feasibility Study for Removing Atherosclerotic Plaque Using the Thermal Effects of a Planar Rectangular High Intensity Ultrasound Transducer
Authors: Christakis Damianou, Christos Christofi, Nicos Mylonas
Abstract:
The aim of this paper was to conduct a feasibility study using a flat rectangular (3x10 mm2) MRI compatible transducer operating at 5 MHz for destroying atherosclerotic plaque using the thermal effects of ultrasound in in vitro models. A parametric study was performed where the time needed to ablate the plaque was studied as a function of Spatial Average Temporal Average (SATA) intensity, and pulse duration. The time needed to ablate plaque is directly related to intensity, and pulse duration. The temperature measured close to the artery is above safe limits and therefore thermal ultrasound does not have a place in removing plaques in arteries.Keywords: ultrasound, atherosclerotic, plaque, pulse
Procedia PDF Downloads 2943973 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation
Procedia PDF Downloads 4473972 Multivariate Dependent Frequency-Severity Modeling of Insurance Claims: A Vine Copula Approach
Authors: Islem Kedidi, Rihab Bedoui Bensalem, Faysal Manssouri
Abstract:
In traditional models of insurance data, the number and size of claims are assumed to be independent. Relaxing the independence assumption, this article explores the Vine copula to model dependence structure between multivariate frequency and average severity of insurance claim. To illustrate this approach, we use the Wisconsin local government property insurance fund which offers several insurance protections for motor vehicles, property and contractor’s equipment claims. Results show that the C-vine copula can better characterize the multivariate dependence structure between frequency and severity. Furthermore, we find significant dependencies especially between frequency and average severity among different coverage types.Keywords: dependency modeling, government insurance, insurance claims, vine copula
Procedia PDF Downloads 2103971 A Review on Light Shafts Rendering for Indoor Scenes
Authors: Hatam H. Ali, Mohd Shahrizal Sunar, Hoshang Kolivand, Mohd Azhar Bin M. Arsad
Abstract:
Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.Keywords: shaft of lights, realistic images, image-based, and geometric-based
Procedia PDF Downloads 2793970 Software Defect Analysis- Eclipse Dataset
Authors: Amrane Meriem, Oukid Salyha
Abstract:
The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.Keywords: software engineering, machine learning, bugs detection, effort estimation
Procedia PDF Downloads 873969 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 1143968 Walking in the Steps of Poets: Evoking Past Poets in Sufi Poetry
Authors: Bilal Orfali
Abstract:
It is common practice in modern times to read mystical poetry and apply it to our mundane lives and loves. Sufis in the early period did the opposite. Their mystical hymns often spun out of the courtly poetic ghazal, panegyric, and wine songs. This paper highlights the relation of the Arabic courtly poetic canon to early Sufism. Sufi akhbār and poetry evoke past poets and their poetic heritage. They tend to quote or refer to eminent poets whose poetry must have been widely circulated and memorized. However, Sufism places this readily recognizable poetry in a new context that deliberately changes the past. It is a process of a metaphorization in which the reality of the pre-Islamic, Umayyad, and Abbasid models now acts as a device or metaphor for the Sufi poetics.Keywords: Sufism, Arabic poetry, literature, Islamic literature, Abbasid
Procedia PDF Downloads 3133967 How Geant4 Hadronic Models Handle Tracking of Pion Particles Resulting from Antiproton Annihilation
Authors: M. B. Tavakoli, R. Reiazi, M. M. Mohammadi, K. Jabbari
Abstract:
From 2003, AD4/ACE experiment in CERN tried to investigate different aspects of antiproton as a new modality in particle therapy. Because of lack of reliable absolute dose measurements attempts to find out the radiobiological characteristics of antiproton have not reached to a reasonable result yet. From the other side, application of Geant4 in medical approaches is increased followed by Geant4-DNA project which focuses on using this code to predict radiation effects in the cellular scale. This way we can exploit Geant4-DNA results for antiproton. Unfortunately, previous studies showed there are serious problem in simulating an antiproton beam using Geant4. Since most of the problem was in the Bragg peak region which antiproton annihilates there, in this work we tried to understand if the problem came from the way in which Geant4 handles annihilation products especially pion particles. This way, we can predict the source of the dose discrepancies between Geant4 simulations and dose measurements done in CERN.Keywords: Geant4, antiproton, annihilation, pion plus, pion minus
Procedia PDF Downloads 6573966 Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method
Authors: Ozden Saygili, Eser Cakti
Abstract:
Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses.Keywords: discrete element method, earthquake safety, nonlinear analysis, masonry structures
Procedia PDF Downloads 317