Search results for: structural dynamic modification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8780

Search results for: structural dynamic modification

6020 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs

Procedia PDF Downloads 362
6019 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid

Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis

Abstract:

This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.

Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener

Procedia PDF Downloads 83
6018 Role of Biotechnology on Pharmaceutical Inventions: An Analysis

Authors: E. Prema

Abstract:

Biotechnology is a study relating to the practical application of living beings in different fields. Generally, it is a study with regard to living organisms in the industrial utilization. It is the technology, which uses living organisms or its parts for specific commercial use. Modification and application of living beings for different practical purposes is possible through biotechnology. Furthermore, today biotechnology is being used in different fields for better results. It is worthwhile to note here that biotechnology is one of the most innovative and intensive industries. It has used the genetically based characteristics in microorganisms, plants and animals to create drugs and to develop drug therapies, which may prevent, cure or alleviate disease and their symptoms. Drugs are basically chemicals and while patenting drugs, the conditions of patentability of chemicals and the types that can be patented are equally applicable to drugs also. Nowadays, the role of biotechnology for manufacturing drugs has assumed much importance because of intellectual property rights. By way using biotechnology, most of the pharmaceutical inventions are getting protection for the period of 20 years as per the Patents Act, 1970 as amended in 2005. There is no doubt that biotechnology is serving the public at large with regard manufacturing drugs and helping the needy people on time.

Keywords: biotechnology, drugs, intellectual property rights, patents

Procedia PDF Downloads 457
6017 Epigenetic Modification Observed in Yeast Chromatin Remodeler Ino80p

Authors: Chang-Hui Shen, Michelle Esposito, Andrew J. Shen, Michael Adejokun, Diana Laterman

Abstract:

The packaging of DNA into nucleosomes is critical to genomic compaction, yet it can leave gene promoters inaccessible to activator proteins or transcription machinery and thus prevents transcriptional initiation. Both chromatin remodelers and histone acetylases (HATs) are the two main transcription co-activators that can reconfigure chromatin structure for transcriptional activation. Ino80p is the core component of the INO80 remodeling complex. Recently, it was shown that Ino80p dissociates from the yeast INO1 promoter after induction. However, when certain HATs were deleted or mutated, Ino80p accumulated at the promoters during gene activation. This suggests a link between HATs’ presence and Ino80p’s dissociation. However, it has yet to be demonstrated that Ino80p can be acetylated. To determine if Ino80p can be acetylated, wild-type Saccharomyces cerevisiae cells carrying Ino80p engineered with a double FLAG tag (MATa INO80-FLAG his3∆200 leu2∆0 met15∆0 trp1∆63 ura3∆0) were grown to mid log phase, as were non-tagged wild type (WT) (MATa his3∆200 leu2∆0 met15∆0 trp1∆63 ura3∆0) and ino80∆ (MATa ino80∆::TRP1 his3∆200 leu2∆0 met15∆0 trp1∆63 ura3∆0) cells as controls. Cells were harvested, and the cell lysates were subjected to immunoprecipitation (IP) with α-FLAG resin to isolate Ino80p. These eluted IP samples were subjected to SDS-PAGE and Western blot analysis. Subsequently, the blots were probed with the α-FLAG and α-acetyl lysine antibodies, respectively. For the blot probed with α-FLAG, one prominent band was shown in the INO80-FLAG cells, but no band was detected in the IP samples from the WT and ino80∆ cells. For the blot probed with the α-acetyl lysine antibody, we detected acetylated Ino80p in the INO80-FLAG strain while no bands were observed in the control strains. As such, our results showed that Ino80p can be acetylated. This acetylation can explain the co-activator’s recruitment patterns observed in current gene activation models. In yeast INO1, it has been shown that Ino80p is recruited to the promoter during repression, and then dissociates from the promoter once de-repression begins. Histone acetylases, on the other hand, have the opposite pattern of recruitment, as they have an increased presence at the promoter as INO1 de-repression commences. This Ino80p recruitment pattern significantly changes when HAT mutant strains are studied. It was observed that instead of dissociating, Ino80p accumulates at the promoter in the absence of functional HATs, such as Gcn5p or Esa1p, under de-repressing processes. As such, Ino80p acetylation may be required for its proper dissociation from the promoters. The remodelers’ dissociation mechanism may also have a wide range of implications with respect to transcriptional initiation, elongation, or even repression as it allows for increased spatial access to the promoter for the various transcription factors and regulators that need to bind in that region. Our findings here suggest a previously uncharacterized interaction between Ino80p and other co-activators recruited to promoters. As such, further analysis of Ino80p acetylation not only will provide insight into the role of epigenetic modifications in transcriptional activation, but also gives insight into the interactions occurring between co-activators at gene promoters during gene regulation.

Keywords: acetylation, chromatin remodeler, epigenetic modification, Ino80p

Procedia PDF Downloads 173
6016 Litho-Structural Variations and Gold Mineralization around Wonaka Schist Belt, North West Nigeria

Authors: Umar Sambo Umar, Ahmad Isah Haruna, Abubakar Sadik Maigari, Muhammad Bello Abubakar

Abstract:

Schist belts in Nigeria occur prominently west of longitude 80 E and sporadic to the east, they are upper Proterozioc low-medium grade deformed metasediments and metavolcanics that were intruded by Pan-African granitoids. The Wonaka schist belt, though reportedly distinctive in composition and metamorphism, is the least understood; the host for primary gold were not defined, structures which may control primary enrichment have not been delineated. The aim of this work is to determine the relationship between litho-structures and the gold around Wonaka schist belt through geological field mapping, petrographic studies and structural data analysis via ArcGis 10.2, Surfer 11.0 and Stereopro 2.0. The results show that the major rock types are mica schist and migmatites, muscovites detected during microstructural analysis suggests low-grade metamorphism in the metapelites. The shear zones identified were trending North Northeast – South Southwest (NNE-SSW), fractures trend mostly Northeast-Southwest (NE-SW) perpendicular to planes of gneissic foliations, these conform to the late Pan-African deformational episode. Pegmatite lodes, net self-cross cutting quartz veins as well as the quartz stringers hosted by both migmatites and schist are delineated as targets for primary gold mineralization, while major confluences of the streams serve as zones for secondary (placer) gold targets since the streams are dendritic and intermittent.

Keywords: gold mineralization, Nigeria, migmatites, Wonaka schist belt

Procedia PDF Downloads 202
6015 The Functions of “Question” and Its Role in Education Process: Quranic Approach

Authors: Sara Tusian, Zahra Salehi Motaahed, Narges Sajjadie, Nikoo Dialame

Abstract:

One of the methods which have frequently been used in Quran is the “question”. In the Quran, in addition to the content, methods are also important. Using analysis-interpretation method, the present study has investigated Quranic questions, and extracted its functions from educational perspective. In so doing, it has first investigated all the questions in Quran and then taking the three-stage classification of education into account, it has offered question functions. The results obtained from this study suggest that question functions in Quran are presented in three categories: the preparation stage (including preparation of the audience, revising the insights, and internal Evolution); main body (including the granting the insight, and elimination of intellectual negligence and the question of innate and logical axioms, the introducting of the realm of thinking, creating emotional arousal and alleged in the claim) and the third stage as modification and revision (including invitation to move in the framework of tasks using the individual beliefs to reveal the contradictions and, Error detection and contribution to change the function) that each of which has a special role in the education process.

Keywords: education, question, Quranic questions, Quran

Procedia PDF Downloads 507
6014 Development of Hydrophobic Coatings on Aluminum Alloy 7075

Authors: Nauman A. Siddiqui

Abstract:

High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.

Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization

Procedia PDF Downloads 280
6013 Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Authors: Sanaz Ahmadzadeh Siyahrood, Arghavan Ebrahimi, Mohammadjavad Mahdavinejad

Abstract:

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Keywords: angle, equal triangle, square, structural hierarchy

Procedia PDF Downloads 198
6012 Development and Application of an Intelligent Masonry Modulation in BIM Tools: Literature Review

Authors: Sara A. Ben Lashihar

Abstract:

The heritage building information modelling (HBIM) of the historical masonry buildings has expanded lately to meet the urgent needs for conservation and structural analysis. The masonry structures are unique features for ancient building architectures worldwide that have special cultural, spiritual, and historical significance. However, there is a research gap regarding the reliability of the HBIM modeling process of these structures. The HBIM modeling process of the masonry structures faces significant challenges due to the inherent complexity and uniqueness of their structural systems. Most of these processes are based on tracing the point clouds and rarely follow documents, archival records, or direct observation. The results of these techniques are highly abstracted models where the accuracy does not exceed LOD 200. The masonry assemblages, especially curved elements such as arches, vaults, and domes, are generally modeled with standard BIM components or in-place models, and the brick textures are graphically input. Hence, future investigation is necessary to establish a methodology to generate automatically parametric masonry components. These components are developed algorithmically according to mathematical and geometric accuracy and the validity of the survey data. The main aim of this paper is to provide a comprehensive review of the state of the art of the existing researches and papers that have been conducted on the HBIM modeling of the masonry structural elements and the latest approaches to achieve parametric models that have both the visual fidelity and high geometric accuracy. The paper reviewed more than 800 articles, proceedings papers, and book chapters focused on "HBIM and Masonry" keywords from 2017 to 2021. The studies were downloaded from well-known, trusted bibliographic databases such as Web of Science, Scopus, Dimensions, and Lens. As a starting point, a scientometric analysis was carried out using VOSViewer software. This software extracts the main keywords in these studies to retrieve the relevant works. It also calculates the strength of the relationships between these keywords. Subsequently, an in-depth qualitative review followed the studies with the highest frequency of occurrence and the strongest links with the topic, according to the VOSViewer's results. The qualitative review focused on the latest approaches and the future suggestions proposed in these researches. The findings of this paper can serve as a valuable reference for researchers, and BIM specialists, to make more accurate and reliable HBIM models for historic masonry buildings.

Keywords: HBIM, masonry, structure, modeling, automatic, approach, parametric

Procedia PDF Downloads 170
6011 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 623
6010 Unveiling the Chaura Thrust: Insights into a Blind Out-of-Sequence Thrust in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

The Chaura Thrust, located in Himachal Pradesh, India, is a prominent geological feature that exhibits characteristics of an out-of-sequence thrust fault. This paper explores the geological setting of Himachal Pradesh, focusing on the Chaura Thrust's unique characteristics, its classification as an out-of-sequence thrust, and the implications of its presence in the region. The introduction provides background information on thrust faults and out-of-sequence thrusts, emphasizing their significance in understanding the tectonic history and deformation patterns of an area. It also outlines the objectives of the paper, which include examining the Chaura Thrust's geological features, discussing its classification as an out-of-sequence thrust, and assessing its implications for the region. The paper delves into the geological setting of Himachal Pradesh, describing the tectonic framework and providing insights into the formation of thrust faults in the region. Special attention is given to the Chaura Thrust, including its location, extent, and geometry, along with an overview of the associated rock formations and structural characteristics. The concept of out-of-sequence thrusts is introduced, defining their distinctive behavior and highlighting their importance in the understanding of geological processes. The Chaura Thrust is then analyzed in the context of an out-of-sequence thrust, examining the evidence and characteristics that support this classification. Factors contributing to the out-of-sequence behavior of the Chaura Thrust, such as stress interactions and fault interactions, are discussed. The geological implications and significance of the Chaura Thrust are explored, addressing its impact on the regional geology, tectonic evolution, and seismic hazard assessment. The paper also discusses the potential geological hazards associated with the Chaura Thrust and the need for effective mitigation strategies in the region. Future research directions and recommendations are provided, highlighting areas that warrant further investigation, such as detailed structural analyses, geodetic measurements, and geophysical surveys. The importance of continued research in understanding and managing geological hazards related to the Chaura Thrust is emphasized. In conclusion, the Chaura Thrust in Himachal Pradesh represents an out-of-sequence thrust fault that has significant implications for the region's geology and tectonic evolution. By studying the unique characteristics and behavior of the Chaura Thrust, researchers can gain valuable insights into the geological processes occurring in Himachal Pradesh and contribute to a better understanding and mitigation of seismic hazards in the area.

Keywords: chaura thrust, out-of-sequence thrust, himachal pradesh, geological setting, tectonic framework, rock formations, structural characteristics, stress interactions, fault interactions, geological implications, seismic hazard assessment, geological hazards, future research, mitigation strategies.

Procedia PDF Downloads 84
6009 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 122
6008 Real-Time Course Recommendation System for Online Learning Platforms

Authors: benabbess anja

Abstract:

This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.

Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions

Procedia PDF Downloads 12
6007 The Design of Safe Spaces in Healthcare Facilities Vulnerable to Tornado Impact in Central US

Authors: Lucy Ampaw-Asiedu, Terri R. Norton

Abstract:

In the wake of recent disasters happening around the world such as earthquake in Italy (January, 2017); hurricanes in the United States (US) (September 2016 and September 2017); and compounding disasters in Haiti (September 2010 and September 2016); to our best knowledge, never has the world seen the need to work on preemptive rather than reactionary measures to salvage this situation than now. Tornadoes are natural hazards that mostly affect mid-western and central states in the US. Tornadoes, like all natural hazards such as hurricanes, earthquakes, floods and others, are very destructive and result in massive destruction to homes, cause billions of dollars in damage and claims many lives. Healthcare facilities in general are vulnerable to disasters, and therefore, the safety of patients, health workers and those who come in to seek shelter should be a priority. The focus of this study is to assess disaster management measures instituted by healthcare facilities. Thus, the sole aim of the study is to examine the vulnerabilities and the design of safe spaces in healthcare facilities in Central US. Objectives that guide the study are to primarily identify the impacts of tornadoes in hospitals and to assess the structural design or specifications of safe spaces. St. John’s Regional Medical Center, now Mercy Hospital in Joplin, is used as a case study. Preliminary results show that the lateral base shear of the proposed design to be 684.24 ton (1508.49kip) for the safe space. Findings from this work will be used to make recommendations about the design of safe spaces for health care facilities in Central US.

Keywords: disaster management, safe spaces, structural design, tornado, vulnerability

Procedia PDF Downloads 220
6006 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System

Authors: K. Kamal

Abstract:

Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.

Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units

Procedia PDF Downloads 179
6005 High-Efficiency Comparator for Low-Power Application

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.

Keywords: efficiency, comparator, power, low

Procedia PDF Downloads 362
6004 Study of Composite Materials for Aisha Containment Chamber

Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.

Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source

Procedia PDF Downloads 214
6003 Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy

Authors: Yuan-Ching Lin, Sin-Yu Chen, Pei-Yu Wu

Abstract:

This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface.

Keywords: GTAW、A6061 aluminum alloy, 、surface modification, tribological study, TiC powder cladding

Procedia PDF Downloads 464
6002 A Study of Students’ Perceptions of Technology in Petaling District

Authors: Ahmad Masduki Bin Selamat

Abstract:

Malaysia is becoming a developed country by the year 2020, the problem is that little is known about the perceptions and curricular values of Malaysian high school students who have taken Living Skills as a subject in the regular public school. How these students perceive technology in their daily lives, in the country’s development and in global context, is not known. The study involved form 4 students from four public schools in Petaling District. The study found that the Petaling District students’ knowledge of technology were good, where 76.6 % of them scored 50% marks and above during the achievement test. In addition, it was also found that only excellent and squatter students perceived technology education as important as a school subject, compared to those students from the urban area. It was found that students preferred business and entrepreneurship topics rather than the other Living Skills curriculum. The study suggests that students should be exposed to technology education from the early years of schooling (preschool to secondary). In addition, the acquisition of skills, the evaluation, revision and modification of the instruction as well as the curriculum should be enforced.

Keywords: technology education, living skills, curricular values, public schools

Procedia PDF Downloads 455
6001 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 100
6000 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: differential protection, intelligent electronic device (IED), 2nd harmonic inhibit, inrush inhibit

Procedia PDF Downloads 304
5999 Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites

Authors: A. A. Salisu, M. Y. Yakasai, K. M. Aujara

Abstract:

Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites.

Keywords: chemical resistance, density test, polymer matrix sisal fibre, thickness swelling

Procedia PDF Downloads 439
5998 Surface Modification of Cotton Using Slaughterhouse Wastes

Authors: Granch Berhe Tseghai, Lodrick Wangatia Makokha

Abstract:

Cotton dyeing using reactive dyes is one of the major water polluter; this is due to large amount of dye and salt remaining in effluent. Recent adverse climate change and its associated effect to human life have lead to search for more sustainable industrial production. Cationization of cotton to improve its affinity for reactive dye has been earmarked as a major solution for dyeing of cotton with no or less salt. Synthetic cationizing agents of ammonium salt have already been commercialized. However, in nature there are proteinous products which are rich in amino and ammonium salts which can be carefully harnessed to be used as cationizing agent for cotton. The hoofs and horns have successfully been used to cationize cotton so as to improve cotton affinity to the dye. The cationization action of the hoof and horn extract on cotton was confirmed by dyeing the pretreated fabric without salt and comparing it with conventionally dyed and untreated salt free dyed fabric. UV-VIS absorption results showed better dye absorption (62.5% and 50% dye bath exhaustion percentage for cationized and untreated respectively) while K/S values of treated samples were similar to conventional sample.

Keywords: cationization, cotton, proteinous products, reactive dyes

Procedia PDF Downloads 342
5997 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 437
5996 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 324
5995 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal

Authors: Elif Bakkaloglu, Necdet Torunbalci

Abstract:

The fact of earthquakes in Turkiye is an inevitable natural disaster. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after an earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-storey hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkiye, using seismic isolators in public hospitals, which are placed in first-degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-storey hospital buildings in cities where those problems are experienced. Although widespread use of seismic isolators in Japan, there are few multi-storey buildings in which seismic isolators are used in Turkiye. As it is known, base isolation systems are the most effective methods of earthquake resistance, as number of floors increases, center of gravity moves away from base in multi-storey buildings, increasing the overturning effect and limiting the use of these systems. In this context, it is aimed to investigate structural systems of multi-storey buildings which built using seismic isolation methods in the World. In addition to this, a working principle is suggested for disseminating seismic isolators in multi-storey hospital buildings. The results to be obtained from the study will guide architects who design multi-storey hospital buildings in their architectural designs and engineers in terms of structural system design.

Keywords: earthquake, energy absorbing systems, hospital, seismic isolation systems

Procedia PDF Downloads 157
5994 Analysis of Key Factors Influencing Muslim Women’s Buying Intentions of Clothes: A Study of UK’s Ethnic Minorities and Modest Fashion Industry

Authors: Nargis Ali

Abstract:

Since the modest fashion market is growing in the UK, there is still little understanding and more concerns found among researchers and marketers about Muslim consumers. Therefore, the present study is designed to explore critical factors influencing Muslim women’s intention to purchase clothing and to identify the differences in the purchase intention of ethnic minority groups in the UK. The conceptual framework is designed using the theory of planned behavior and social identity theory. In order to satisfy the research objectives, a structured online questionnaire was published on Facebook from 20 November to 21 March. As a result, 1087 usable questionnaires were received and used to assess the proposed model fit through structural equation modeling. Results revealed that social media does influence the purchase intention of Muslim women. Muslim women search for stylish clothes that provide comfort during summer while they prefer soft and subdued colors. Furthermore, religious knowledge and religious practice, and fashion uniqueness strongly influence their purchase intention, while hybrid identity is negatively related to the purchase intention of Muslim women. This research contributes to the literature linked to Muslim consumers at a time when the UK's large retailers were seeking to attract Muslim consumers through modestly designed outfits. Besides, it will be helpful to formulate or revise product and marketing strategies according to UK’s Muslim women’s tastes and needs.

Keywords: fashion uniqueness, hybrid identity, religiosity, social media, social identity theory, structural equation modeling, theory of planned behavior

Procedia PDF Downloads 230
5993 Molecular Dynamic Simulation of Cold Spray Process

Authors: Aneesh Joshi, Sagil James

Abstract:

Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes.

Keywords: cold spray process, molecular dynamics simulation, nanoparticles, particle impact

Procedia PDF Downloads 372
5992 Global Culture Museums: Bridging Societies, Fostering Understanding, and Preserving Heritage

Authors: Hossam Hegazi

Abstract:

Global culture museums play a pivotal role in fostering cross-cultural connections, enhancing mutual understanding, and safeguarding the rich tapestry of cultural heritage. These institutions serve as dynamic bridges, facilitating the exchange of ideas and values among diverse societies. One of the primary functions of global culture museums is to connect people from different backgrounds. By showcasing the artistic expressions, traditions, and historical artifacts of various civilizations, these museums create a shared space for dialogue. Visitors are afforded the opportunity to explore and appreciate the nuances of cultures different from their own, promoting a sense of global interconnectedness. Moreover, these museums contribute significantly to mutual understanding. Through interactive exhibits, innovative technologies, and educational programs, they offer immersive experiences that transcend linguistic and geographical barriers. Visitors gain insights into the customs, beliefs, and lifestyles of others, fostering empathy and appreciation for cultural diversity. Preserving cultural heritage stands as another key objective of global culture museums. By housing and curating artifacts, artworks, and historical items, these institutions play a crucial role in safeguarding the collective memory of humanity. This preservation effort ensures that future generations have access to the cultural legacies that have shaped societies across the globe. In conclusion, global culture museums serve as dynamic hubs that bring people together, promote understanding, and safeguard the wealth of human cultural heritage. Their impact extends beyond the walls of exhibition halls, contributing to a more interconnected and culturally enriched world.

Keywords: global culture museums, cross-cultural connections, mutual understanding, societal dialogue

Procedia PDF Downloads 34
5991 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids

Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje

Abstract:

Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.

Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise

Procedia PDF Downloads 131