Search results for: particle morphology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2963

Search results for: particle morphology

203 Wave Agitated Signatures in the Oolitic Limestones of Kunihar Formation, Proterozoic Simla Group, Lesser Himalaya, India

Authors: Alono Thorie, Ananya Mukhopadhyay

Abstract:

Ooid bearing horizons of the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya have been addressed in the present work. The study is concentrated around the outskirts of Arki town, Solan district, Himachal Pradesh, India. Based on the sedimentary facies associations, the processes that promote the formation of ooids have been documented. The facies associations that have been recorded are: (i) Oolitic-Intraclastic grainstone (FA1), (ii) Oolitic grainstone (FA2), (iii) Boundstone (FA3), (iv) Dolomudstone (FA4) and (v) Rudstone (FA5). Oolitic-Intraclastic grainstone (FA1) mainly consists of well sorted ooids with concentric laminae and intraclasts. Large ooids with grain sizes more than 4 mm are characteristic of oolites throughout the area. Normally graded beds consisting of ooids and intraclasts are frequently documented in storm sediments in shelf environments and carbonate platforms. The well-sorted grainstone fabric indicates deposition in a high-energy shoal with tidal currents and storm reworking. FA2 comprises spherical to elliptical grains up to 8.5cm in size with concentric cortex and micritic nuclei. Peloids in FA2 are elliptical, rounded objects <0.3 mm in size. FA1 and FA2 have been recorded alongside boundstones (FA3) comprising stromatolites having columnar, wavy and domal morphology. Boundstones (FA3) reflect microbial growth in carbonate platforms and reefs. Dolomudstones (FA4) interbedded with cross laminated sandstones and erosional surfaces reflect sedimentation in storm dominated zones below fair-weather wave base. Rudstone (FA5) is composed of oolitic grainstone (FA2), boundstone (FA3) and dolomudstone (FA4). These clasts are few mm to more than 10 cm in length. Rudstones indicate deposition along a slope with intermittent influence of wave currents and storm activities. Most ooids from the Kunihar Formation are regular ooids with abundance of broken ooids. Compound and concentric ooids indicating medium to low energy environments are present but scarce. Ooids from high energy domains are more dominant than ooids developed from low energy environments. The unusually large size of the Kunihar ooids (more than 8.5 cm) is rare in the geological record. Development of carbonate deposits such as oolitic- intraclastic Grainstones (FA1), oolitic grainstones (FA2) and rudstones (FA5), and reflect deposition in an agitated beach environment with abundant microbial activity and high energy shallow marine waters influenced by tide, wave and storm currents. Occurrences of boundstone (FA4) or stromatolitic carbonate amongst oolitic facies (FA1 and FA2) and appearance of compound and concentric ooids indicate intervals of calm in between agitated phases of storm, wave and tidal activities.

Keywords: proterozoic, Simla Group, ooids, stromatolites

Procedia PDF Downloads 188
202 Standardized Testing of Filter Systems regarding Their Separation Efficiency in Terms of Allergenic Particles and Airborne Germs

Authors: Johannes Mertl

Abstract:

Our surrounding air contains various particles. Besides typical representatives of inorganic dust, such as soot and ash, also particles originating from animals, microorganisms or plants are floating through the air, so-called bioaerosols. The group of bioaerosols consists of a broad spectrum of particles of different size, including fungi, bacteria, viruses, spores, or tree, flower and grass pollen that are of high relevance for allergy sufferers. In dependence of the environmental climate and the actual season, these allergenic particles can be found in enormous numbers in the air and are inhaled by humans via the respiration tract, with a potential for inflammatory diseases of the airways, such as asthma or allergic rhinitis. As a consequence air filter systems of ventilation and air conditioning devices are required to meet very high standards to prevent, or at least lower the number of allergens and airborne germs entering the indoor air. Still, filter systems are merely classified for their separation rates using well-defined mineral test dust, while no appropriate sufficiently standardized test methods for bioaerosols exist. However, determined separation rates for mineral test particles of a certain size cannot simply be transferred to bioaerosols, as separation efficiency of particularly fine and respirable particles (< 10 microns) is dependent not only on their shape and particle diameter, but also defined by their density and physicochemical properties. For this reason, the OFI developed a test method, which directly enables a testing of filters and filter media for their separation rates on bioaerosols, as well as a classification of filters. Besides allergens from an intact or fractured tree or grass pollen, allergenic proteins bound to particulates, as well as allergenic fungal spores (e.g. Cladosporium cladosporioides), or bacteria can be used to classify filters regarding their separation rates. Allergens passing through the filter can then be detected by highly sensitive immunological assays (ELISA) or in the case of fungal spores by microbiological methods, which allow for the detection of even one single spore passing the filter. The test procedure, which is carried out in laboratory scale, was furthermore validated regarding its sufficiency to cover real life situations by upscaling using air conditioning devices showing great conformity in terms of separation rates. Additionally, a clinical study with allergy sufferers was performed to verify analytical results. Several different air conditioning filters from the car industry have been tested, showing significant differences in their separation rates.

Keywords: airborne germs, allergens, classification of filters, fine dust

Procedia PDF Downloads 253
201 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka

Abstract:

Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.

Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment

Procedia PDF Downloads 354
200 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 60
199 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations

Authors: Jyh Sheen, Yong-Lin Wang

Abstract:

This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.

Keywords: microwave measurement, dielectric constant, mixture rules, composites

Procedia PDF Downloads 367
198 Distribution and Diversity of Pyrenocarpous Lichens in India with Special Reference to Forest Health

Authors: Gaurav Kumar Mishra, Sanjeeva Nayaka, Dalip Kumar Upreti

Abstract:

Our nature exhibited presence of a number of unique plants which can be used as indicator of environmental condition of particular place. Lichens are unique plant which has an ability to absorb not only organic, inorganic and metaloties but also absorb radioactive nuclide substances present in the environment. In the present study pyrenocarpous lichens will used as indicator of good forest health in a particular place. The Pyrenocarpous lichens are simple crust forming with black dot like perithecia have few characters for their taxonomical segregation as compared to their foliose and fruticose brethrean. The thallus colour and nature, presence and absence of hypothallus are only few characters of thallus are used to segregate the pyrenocarpous taxa. The fruiting bodies of pyrenolichens i.e. ascocarps are perithecia. The perithecia and the contents found within them posses many important criteria for the segregation of pyrenocarpous lichen taxa. The ascocarp morphology, ascocarp arrangement, the perithecial wall, ascocarp shape and colour, ostiole shape and position, ostiole colour, ascocarp anatomy including type of paraphyses, asci shape and size, ascospores septation, ascospores wall and periphyses are the valuable charcters used for segregation of different pyrenocarpous lichen taxa. India is represented by the occurrence of the 350 species of 44 genera and eleven families. Among the different genera Pyrenula is dominant with 82 species followed by the Porina with 70 species. Recently, systematic of the pyrenocarpous lichens have been revised by American and European lichenologists using phylogenetic methods. Still the taxonomy of pyrenocarpous lichens is in flux and information generated after the completion of this study will play vital role in settlement of the taxonomy of this peculiar group of lichens worldwide. The Indian Himalayan region exhibit rich diversity of pyrenocarpous lichens in India. The western Himalayan region has luxuriance of pyrenocarpous lichens due to its unique topography and climate condition. However, the eastern Himalayan region has rich diversity of pyrenocarpous lichens due to its warmer and moist climate condition. The rich moist and warmer climate in eastern Himalayan region supports forest with dominance of evergreen tree vegetation. The pyrenocarpous lichens communities are good indicator of young and regenerated forest type. The rich diversity of lichens clearly indicates that moist of the forest within the eastern Himalayan region has good health of forest. Due to fast pace of urbanization and other developmental activities will defiantly have adverse effects on the diversity and distribution of pyrenocarpous lichens in different forest type and the present distribution pattern will act as baseline data for carried out future biomonitoring studies in the area.

Keywords: lichen diversity, indicator species, environmental factors, pyrenocarpous

Procedia PDF Downloads 147
197 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 191
196 Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology

Authors: Julia Gontar, Natalia Buderatskaya, Igor Ilyin, Olga Parnitskaya, Sergey Lavrynenko, Eduard Kapustin, Ekaterina Ilyina, Yana Lakhno

Abstract:

Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease.

Keywords: donor oocyte cytoplasmic transfer, embryos’ chromosome set, oocyte spindle transfer, pronuclear transfer

Procedia PDF Downloads 328
195 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model

Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis

Abstract:

Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.

Keywords: artery, drug, nanoparticles, navigation

Procedia PDF Downloads 107
194 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks

Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan

Abstract:

Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.

Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.

Procedia PDF Downloads 88
193 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 184
192 Unraveling Language Contact through Syntactic Dynamics of ‘Also’ in Hong Kong and Britain English

Authors: Xu Zhang

Abstract:

This article unveils an indicator of language contact between English and Cantonese in one of the Outer Circle Englishes, Hong Kong (HK) English, through an empirical investigation into 1000 tokens from the Global Web-based English (GloWbE) corpus, employing frequency analysis and logistic regression analysis. It is perceived that Cantonese and general Chinese are contextually marked by an integral underlying thinking pattern. Chinese speakers exhibit a reliance on semantic context over syntactic rules and lexical forms. This linguistic trait carries over to their use of English, affording greater flexibility to formal elements in constructing English sentences. The study focuses on the syntactic positioning of the focusing subjunct ‘also’, a linguistic element used to add new or contrasting prominence to specific sentence constituents. The English language generally allows flexibility in the relative position of 'also’, while there is a preference for close marking relationships. This article shifts attention to Hong Kong, where Cantonese and English converge, and 'also' finds counterparts in Cantonese ‘jaa’ and Mandarin ‘ye’. Employing a corpus-based data-driven method, we investigate the syntactic position of 'also' in both HK and GB English. The study aims to ascertain whether HK English exhibits a greater 'syntactic freedom,' allowing for a more distant marking relationship with 'also' compared to GB English. The analysis involves a random extraction of 500 samples from both HK and GB English from the GloWbE corpus, forming a dataset (N=1000). Exclusions are made for cases where 'also' functions as an additive conjunct or serves as a copulative adverb, as well as sentences lacking sufficient indication that 'also' functions as a focusing particle. The final dataset comprises 820 tokens, with 416 for GB and 404 for HK, annotated according to the focused constituent and the relative position of ‘also’. Frequency analysis reveals significant differences in the relative position of 'also' and marking relationships between HK and GB English. Regression analysis indicates a preference in HK English for a distant marking relationship between 'also' and its focused constituent. Notably, the subject and other constituents emerge as significant predictors of a distant position for 'also.' Together, these findings underscore the nuanced linguistic dynamics in HK English and contribute to our understanding of language contact. It suggests that future pedagogical practice should consider incorporating the syntactic variation within English varieties, facilitating leaners’ effective communication in diverse English-speaking environments and enhancing their intercultural communication competence.

Keywords: also, Cantonese, English, focus marker, frequency analysis, language contact, logistic regression analysis

Procedia PDF Downloads 55
191 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
190 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 192
189 Bioresorbable Medicament-Eluting Grommet Tube for Otitis Media with Effusion

Authors: Chee Wee Gan, Anthony Herr Cheun Ng, Yee Shan Wong, Subbu Venkatraman, Lynne Hsueh Yee Lim

Abstract:

Otitis media with effusion (OME) is the leading cause of hearing loss in children worldwide. Surgery to insert grommet tube into the eardrum is usually indicated for OME unresponsive to antimicrobial therapy. It is the most common surgery for children. However, current commercially available grommet tubes are non-bioresorbable, not drug-treated, with unpredictable duration of retention on the eardrum to ventilate middle ear. Their functionality is impaired when clogged or chronically infected, requiring additional surgery to remove/reinsert grommet tubes. We envisaged that a novel fully bioresorbable grommet tube with sustained antibiotic release technology could address these drawbacks. In this study, drug-loaded bioresorbable poly(L-lactide-co-ε-caprolactone)(PLC) copolymer grommet tubes were fabricated by microinjection moulding technique. In vitro drug release and degradation model of PLC tubes were studied. Antibacterial property was evaluated by incubating PLC tubes with P. aeruginosa broth. Surface morphology was analyzed using scanning electron microscopy. A preliminary animal study was conducted using guinea pigs as an in vivo model to evaluate PLC tubes with and without drug, with commercial Mini Shah grommet tube as comparison. Our in vitro data showed sustained drug release over 3 months. All PLC tubes revealed exponential degradation profiles over time. Modeling predicted loss of tube functionality in water to be approximately 14 weeks and 17 weeks for PLC with and without drug, respectively. Generally, PLC tubes had less bacteria adherence, which were attributed to the much smoother tube surfaces compared to Mini Shah. Antibiotic from PLC tube further made bacteria adherence on surface negligible. They showed neither inflammation nor otorrhea after 18 weeks post-insertion in the eardrums of guinea pigs, but had demonstrated severe degree of bioresorption. Histology confirmed the new PLC tubes were biocompatible. Analyses on the PLC tubes in the eardrums showed bioresorption profiles close to our in vitro degradation models. The bioresorbable antibiotic-loaded grommet tubes showed good predictability in functionality. The smooth surface and sustained release technology reduced the risk of tube infection. Tube functional duration of 18 weeks allowed sufficient ventilation period to treat OME. Our ongoing studies include modifying the surface properties with protein coating, optimizing the drug dosage in the tubes to enhance their performances, evaluating their functional outcome on hearing after full resoption of grommet tube and healing of eardrums, and developing animal model with OME to further validate our in vitro models.

Keywords: bioresorbable polymer, drug release, grommet tube, guinea pigs, otitis media with effusion

Procedia PDF Downloads 450
188 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications

Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy

Abstract:

Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.

Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr

Procedia PDF Downloads 513
187 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter

Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer

Abstract:

This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised.  The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.

Keywords: electrostatic precipitators, air quality, particulates emissions, electron microscopy, image j

Procedia PDF Downloads 253
186 Can Zirconia Wings of Resin Retained Cantilever Bridges Be Effectively Bonded To Tooth Tissue When Compared With Metal Wings In The Anterior Dentition in vivo? - A Systematic Review.

Authors: Ariyan S. Araghi, Guy C. Jackson, Stephen J. Bonsor

Abstract:

Materials & Methods: A systematic literature search was undertaken using pre-determined inclusion and exclusion criteria. This review followed the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) statement. Several databases were used to search for randomised control trials and longitudinal cohort studies, which were published less than thirty years ago. A total of 54 studies met the predefined inclusion criteria. Four studies reviewed the success, survival, and failure characteristics of zirconia framework resin retained bridges, whilst two reviewed non-precious metal resin retained bridges. Results: The analysis of the studies revealed an overall survival rate of 95.9% for zirconia-based restorations compared to 90.7% for non-precious metal frameworks. Non-precious metal resin retained bridges displayed a higher overall failure rate of 11.9% compared to 4.6% for zirconia-based restorations in the analysed papers. The most frequent complications were wing debonding for the non-precious metal wing group, whereas substructure fracture and veneering ceramic fracture were more prevalent for the zirconia arm of the study. Conclusion: Both types of resin retained bridges provide effective medium to long-term survival. Zirconia-based frameworks will provide marginally increased success and survival and greatly improved aesthetics. However, catastrophic failure is more likely with zirconia-based restorations. Non-precious metal is time tested but performs worse than its zirconia counterpart with regards to longevity; it does not exhibit the same framework fractures as zirconia. Cement choice and attention to the adhesive bonding systems used appear to be paramount to restoration longevity with both restoration subtypes. Furthermore, improved longevity can be seen when air particle abrasion is incorporated into the adhesive protocol. Within the limitations of this study, it has been determined that zirconia-based resin retained bridges can be effectively used in anterior cantilever bridges. Clinical Significance: Zirconia-based resin retained bridges have been demonstrating promising results in terms of improved success and survival characteristics, together with improved aesthetics when compared to non-precious metal winged resin retained bridges. Their popularity is increasing in the age of digital dentistry as many restorations are manufactured using such technology. It is essential that clinicians understand the limitations of each material type and principles of adhesion to ensure restoration longevity.

Keywords: resin retained bridge, fixed partial denture, zirconia bridge, adhesive bridge

Procedia PDF Downloads 81
185 Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of PBSu

Authors: M. Nerantzaki, I. Koliakou, D. Bikiaris

Abstract:

This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles (nHA) with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into Poly(butylene succinate) (PBSu), improves the bioactivity of the aliphatic polyester and affects new bone growth inhibiting resorption and enhancing bone formation. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO42- -containing solution was added drop-wise into the Ca2+-containing solution, while the molar ratio of Ca/P was adjusted at 1.67. The HA precursor was then treated hydrothermally at 200°C for 72 h. The resulting powder was characterized using XRD, FT-IR, TEM, and EDXA. Afterwards, PBSu nanocomposites containing 2.5wt% (nHA) were prepared by in situ polymerization technique for the first time and were examined as potential scaffolds for bone engineering applications. For comparison purposes composites containing either 2.5wt% micro-Bioglass (mBG) or 2.5wt% mBG-nHA were prepared and studied, too. The composite scaffolds were characterized using SEM, FTIR, and XRD. Mechanical testing (Instron 3344) and Contact Angle measurements were also carried out. Enzymatic degradation was studied in an aqueous solution containing a mixture of R. Oryzae and P. Cepacia lipases at 37°C and pH=7.2. In vitro biomineralization test was performed by immersing all samples in simulated body fluid (SBF) for 21 days. Biocompatibility was assessed using rat Adipose Stem Cells (rASCs), genetically modified by nucleofection with DNA encoding SB100x transposase and pT2-Venus-neo transposon expression plasmids in order to attain fluorescence images. Cell proliferation and viability of cells on the scaffolds were evaluated using fluoresce microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. Finally, osteogenic differentiation was assessed by staining rASCs with alizarine red using cetylpyridinium chloride (CPC) method. TEM image of the fibrous HAp nanoparticles, synthesized in the present study clearly showed the fibrous morphology of the synthesized powder. The addition of nHA decreased significantly the contact angle of the samples, indicating that the materials become more hydrophilic and hence they absorb more water and subsequently degrade more rapidly. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. Metabolic activity of rASCs on all PBSu composites was high and increased from day 1 of culture to day 14. On day 28 metabolic activity of rASCs cultured on samples enriched with bioceramics was significantly decreased due to possible differentiation of rASCs to osteoblasts. Staining rASCs with alizarin red after 28 days in culture confirmed our initial hypothesis as the presence of calcium was detected, suggesting osteogenic differentiation of rACS on PBSu/nHAp/mBG 2.5% and PBSu/mBG 2.5% composite scaffolds.

Keywords: biomaterials, hydroxyapatite nanorods, poly(butylene succinate), scaffolds

Procedia PDF Downloads 308
184 Evaluation of Mixing and Oxygen Transfer Performances for a Stirred Bioreactor Containing P. chrysogenum Broths

Authors: A. C. Blaga, A. Cârlescu, M. Turnea, A. I. Galaction, D. Caşcaval

Abstract:

The performance of an aerobic stirred bioreactor for fungal fermentation was analyzed on the basis of mixing time and oxygen mass transfer coefficient, by quantifying the influence of some specific geometrical and operational parameters of the bioreactor, as well as the rheological behavior of Penicillium chrysogenum broth (free mycelia and mycelia aggregates). The rheological properties of the fungus broth, controlled by the biomass concentration, its growth rate, and morphology strongly affect the performance of the bioreactor. Experimental data showed that for both morphological structures the accumulation of fungus biomass induces a significant increase of broths viscosity and modifies the rheological behavior. For lower P. chrysogenum concentrations (both morphological conformations), the mixing time initially increases with aeration rate, reaches a maximum value and decreases. This variation can be explained by the formation of small bubbles, due to the presence of solid phase which hinders the bubbles coalescence, the rising velocity of bubbles being reduced by the high apparent viscosity of fungus broths. By biomass accumulation, the variation of mixing time with aeration rate is gradually changed, the continuous reduction of mixing time with air input flow increase being obtained for 33.5 g/l d.w. P. chrysogenum. Owing to the superior apparent viscosity, which reduces considerably the relative contribution of mechanical agitation to the broths mixing, these phenomena are more pronounced for P. chrysogenum free mycelia. Due to the increase of broth apparent viscosity, the biomass accumulation induces two significant effects on oxygen transfer rate: the diminution of turbulence and perturbation of bubbles dispersion - coalescence equilibrium. The increase of P. chrysogenum free mycelia concentration leads to the decrease of kla values. Thus, for the considered variation domain of the main parameters taken into account, namely air superficial velocity from 8.36 10-4 to 5.02 10-3 m/s and specific power input from 100 to 500 W/m3, kla was reduced for 3.7 times for biomass concentration increase from 4 to 36.5 g/l d.w. The broth containing P. crysogenum mycelia aggregates exhibits a particular behavior from the point of view of oxygen transfer. Regardless of bioreactor operating conditions, the increase of biomass concentration leads initially to the increase of oxygen mass transfer rate, the phenomenon that can be explained by the interaction of pellets with bubbles. The results are in relation with the increase of apparent viscosity of broths corresponding to the variation of biomass concentration between the mentioned limits. Thus, the apparent viscosity of the suspension of fungus mycelia aggregates increased for 44.2 times and fungus free mycelia for 63.9 times for CX increase from 4 to 36.5 g/l d.w. By means of the experimental data, some mathematical correlations describing the influences of the considered factors on mixing time and kla have been proposed. The proposed correlations can be used in bioreactor performance evaluation, optimization, and scaling-up.

Keywords: biomass concentration, mixing time, oxygen mass transfer, P. chrysogenum broth, stirred bioreactor

Procedia PDF Downloads 340
183 Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock

Authors: Douglas E. Mainhart, Alejandro Fierro-Cabo, Bradley Christoffersen, Charlotte Reemts

Abstract:

Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability.

Keywords: conservation, drought conditioning, semi-arid restoration, plant physiology

Procedia PDF Downloads 86
182 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141
181 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis

Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han

Abstract:

Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.

Keywords: nanoparticles, catalysis, multicomponent, quinoline

Procedia PDF Downloads 128
180 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 144
179 Comparing the Effectiveness of the Crushing and Grinding Route of Comminution to That of the Mine to Mill Route in Terms of the Percentage of Middlings Present in Processed Lead-Zinc Ore Samples

Authors: Chinedu F. Anochie

Abstract:

The presence of gangue particles in recovered metal concentrates has been a serious challenge to ore dressing engineers. Middlings lower the quality of concentrates, and in most cases, drastically affect the smelter terms, owing to exorbitant amounts paid by Mineral Processing industries as treatment charge. Models which encourage optimization of liberation operations have been utilized in most ore beneficiation industries to reduce the presence of locked particles in valuable concentrates. Moreover, methods such as incorporation of regrind mills, scavenger, rougher and cleaner cells, to the milling and flotation plants has been widely employed to tackle these concerns, and to optimize the grade–recovery relationship of metal concentrates. This work compared the crushing and grinding method of liberation, to the mine to mill route, by evaluating the proportion of middlings present in selectively processed complex Pb-Zn ore samples. To establish the effect of size reduction operations on the percentage of locked particles present in recovered concentrates, two similar samples of complex Pb- Zn ores were processed. Following blasting operation, the first ore sample was ground directly in a ball mill (Mine to Mill Route of Comminution), while the other sample was manually crushed, and subsequently ground in the ball mill (Crushing and Grinding Route of Comminution). The two samples were separately sieved in a mesh to obtain the desired representative particle sizes. An equal amount of each sample that would be processed in the flotation circuit was then obtained with the aid of a weighing balance. These weighed fine particles were simultaneously processed in the flotation circuit using the selective flotation technique. Sodium cyanide, Methyl isobutyl carbinol, Sodium ethyl xanthate, Copper sulphate, Sodium hydroxide, Lime and Isopropyl xanthate, were the reagents used to effect differential flotation of the two ore samples. Analysis and calculations showed that the degree of liberation obtained for the ore sample which went through the conventional crushing and grinding route of comminution, was higher than that of the directly milled run off mine (ROM) ore. Similarly, the proportion of middlings obtained from the separated galena (PbS) and sphalerite (ZnS) concentrates, were lower for the crushed and ground ore sample. A concise data which proved that the mine to mill method of size reduction is not the most ideal technique for the recovery of quality metal concentrates has been established.

Keywords: comminution, degree of liberation, middlings, mine to mill

Procedia PDF Downloads 133
178 Piled Critical Size Bone-Biomimetic and Biominerizable Nanocomposites: Formation of Bioreactor-Induced Stem Cell Gradients under Perfusion and Compression

Authors: W. Baumgartner, M. Welti, N. Hild, S. C. Hess, W. J. Stark, G. Meier Bürgisser, P. Giovanoli, J. Buschmann

Abstract:

Perfusion bioreactors are used to solve problems in tissue engineering in terms of sufficient nutrient and oxygen supply. Such problems especially occur in critical size grafts because vascularization is often too slow after implantation ending up in necrotic cores. Biominerizable and biocompatible nanocomposite materials are attractive and suitable scaffold materials for bone tissue engineering because they offer mineral components in organic carriers – mimicking natural bone tissue. In addition, human adipose derived stem cells (ASCs) can potentially be used to increase bone healing as they are capable of differentiating towards osteoblasts or endothelial cells among others. In the present study, electrospun nanocomposite disks of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) were seeded with human ASCs and eight disks were stacked in a bioreactor running with normal culture medium (no differentiation supplements). Under continuous perfusion and uniaxial cyclic compression, load-displacement curves as a function of time were assessed. Stiffness and energy dissipation were recorded. Moreover, stem cell densities in the layers of the piled scaffold were determined as well as their morphologies and differentiation status (endothelial cell differentiation, chondrogenesis and osteogenesis). While the stiffness of the cell free constructs increased over time caused by the transformation of the a-CaP nanoparticles into flake-like apatite, ASC-seeded constructs showed a constant stiffness. Stem cell density gradients were histologically determined with a linear increase in the flow direction from the bottom to the top of the 3.5 mm high pile (r2 > 0.95). Cell morphology was influenced by the flow rate, with stem cells getting more roundish at higher flow rates. Less than 1 % osteogenesis was found upon osteopontin immunostaining at the end of the experiment (9 days), while no endothelial cell differentiation and no chondrogenesis was triggered under these conditions. All ASCs had mainly remained in their original pluripotent status within this time frame. In summary, we have fabricated a critical size bone graft based on a biominerizable bone-biomimetic nanocomposite with preserved stiffness when seeded with human ASCs. The special feature of this bone graft was that ASC densities inside the piled construct varied with a linear gradient, which is a good starting point for tissue engineering interfaces such as bone-cartilage where the bone tissue is cell rich while the cartilage exhibits low cell densities. As such, this tissue-engineered graft may act as a bone-cartilage interface after the corresponding differentiation of the ASCs.

Keywords: bioreactor, bone, cartilage, nanocomposite, stem cell gradient

Procedia PDF Downloads 308
177 Pickering Dry Emulsion System for Dissolution Enhancement of Poorly Water Soluble Drug (Fenofibrate)

Authors: Nitin Jadhav, Pradeep R. Vavia

Abstract:

Poor water soluble drugs are difficult to promote for oral drug delivery as they demonstrate poor and variable bioavailability because of its poor solubility and dissolution in GIT fluid. Nowadays lipid based formulations especially self microemulsifying drug delivery system (SMEDDS) is found as the most effective technique. With all the impressive advantages, the need of high amount of surfactant (50% - 80%) is the major drawback of SMEDDS. High concentration of synthetic surfactant is known for irritation in GIT and also interference with the function of intestinal transporters causes changes in drug absorption. Surfactant may also reduce drug activity and subsequently bioavailability due to the enhanced entrapment of drug in micelles. In chronic treatment these issues are very conspicuous due to the long exposure. In addition the liquid self microemulsifying system also suffers from stability issues. Recently one novel approach of solid stabilized micro and nano emulsion (Pickering emulsion) has very admirable properties such as high stability, absence or very less concentration of surfactant and easily converts into the dry form. So here we are exploring pickering dry emulsion system for dissolution enhancement of anti-lipemic, extremely poorly water soluble drug (Fenofibrate). Oil moiety for emulsion preparation was selected mainly on the basis of higher solubility of drug. Captex 300 was showed higher solubility for fenofibrate, hence selected as oil for emulsion. With Silica (solid stabilizer); Span 20 was selected to improve the wetting property of it. Emulsion formed by Silica and Span20 as stabilizer at the ratio 2.5:1 (silica: span 20) was found very stable at the particle size 410 nm. The prepared emulsion was further preceded for spray drying and formed microcapsule evaluated for in-vitro dissolution study, in-vivo pharmacodynamic study and characterized for DSC, XRD, FTIR, SEM, optical microscopy etc. The in vitro study exhibits significant dissolution enhancement of formulation (85 % in 45 minutes) as compared to plain drug (14 % in 45 minutes). In-vivo study (Triton based hyperlipidaemia model) exhibits significant reduction in triglyceride and cholesterol with formulation as compared to plain drug indicating increasing in fenofibrate bioavailability. DSC and XRD study exhibit loss of crystallinity of drug in microcapsule form. FTIR study exhibit chemical stability of fenofibrate. SEM and optical microscopy study exhibit spherical structure of globule coated with solid particles.

Keywords: captex 300, fenofibrate, pickering dry emulsion, silica, span20, stability, surfactant

Procedia PDF Downloads 498
176 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef

Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan

Abstract:

Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.

Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment

Procedia PDF Downloads 91
175 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Zafer Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper first of all investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as capillary absorption, sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total heat of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of capillary absorption and sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower permeability compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: diatomite, fibre, strength, supplementary cementing material

Procedia PDF Downloads 330
174 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.

Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals

Procedia PDF Downloads 93