Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4928

Search results for: neural progentor cells

2168 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 337
2167 Immunocytochemical Stability of Antigens in Cytological Samples Stored in In-house Liquid-Based Medium

Authors: Anamarija Kuhar, Veronika Kloboves Prevodnik, Nataša Nolde, Ulrika Klopčič

Abstract:

The decision for immunocytochemistry (ICC) is usually made in the basis of the findings in Giemsa- and/or Papanicolaou- smears. More demanding diagnostic cases require preparation of additional cytological preparations. Therefore, it is convenient to suspend cytological samples in a liquid based medium (LBM) that preserve antigen and morphological properties. However, the duration of these properties being preserved in the medium is usually unknown. Eventually, cell morphology becomes impaired and altered, as well as antigen properties may be lost or become diffused. In this study, the influence of cytological sample storage length in in-house liquid based medium on antigen properties and cell morphology is evaluated. The question is how long the cytological samples in this medium can be stored so that the results of immunocytochemical reactions are still reliable and can be safely used in routine cytopathological diagnostics. The stability of 6 ICC markers that are most frequently used in everyday routine work were tested; Cytokeratin AE1/AE3, Calretinin, Epithelial specific antigen Ep-CAM (MOC-31), CD 45, Oestrogen receptor (ER), and Melanoma triple cocktail were tested on methanol fixed cytospins prepared from fresh fine needle aspiration biopsies, effusion samples, and disintegrated lymph nodes suspended in in-house cell medium. Cytospins were prepared on the day of the sampling as well as on the second, fourth, fifth, and eight day after sample collection. Next, they were fixed in methanol and immunocytochemically stained. Finally, the percentage of positive stained cells, reaction intensity, counterstaining, and cell morphology were assessed using two assessment methods: the internal assessment and the UK NEQAS ICC scheme assessment. Results show that the antigen properties for Cytokeratin AE1/AE3, MOC-31, CD 45, ER, and Melanoma triple cocktail were preserved even after 8 days of storage in in-house LBM, while the antigen properties for Calretinin remained unchanged only for 4 days. The key parameters for assessing detection of antigen are the proportion of cells with a positive reaction and intensity of staining. Well preserved cell morphology is highly important for reliable interpretation of ICC reaction. Therefore, it would be valuable to perform a similar analysis for other ICC markers to determine the duration in which the antigen and morphological properties are preserved in LBM.

Keywords: cytology samples, cytospins, immunocytochemistry, liquid-based cytology

Procedia PDF Downloads 142
2166 Influence of Bacterial Motility on Biofilm Formation

Authors: Li Cheng, Zhang Yilei, Cohen Yehuda

Abstract:

Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study.

Keywords: iDynoMics, biofilm structure, bacterial motility, motility mechanisms

Procedia PDF Downloads 390
2165 The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 373
2164 Measurement of the Neutron Spectrum of 241AmLi and 241AmF Sources Using the Bonner Sphere Spectrometers

Authors: Victor Rocha Carvalho

Abstract:

The Bonner Sphere Spectrometry was used to obtain the average energy, the fluence rate, and radioprotection quantities such as the personal and ambient dose equivalent of the ²⁴¹AmLi and ²⁴¹AmF isotopic neutron sources used in the Neutron Metrology Laboratory - LN. The counts of the sources were performed with six different spherical moderators around the detector. Through this, the neutron spectrum was obtained by means of the software named NeuraLN, developed by the LN, that uses the neural networks technique. The 241AmLi achieved a result close to the literature, and 241AmF, which contains few published references, acquired a result with a slight variation from the literature. Therefore, besides fulfilling its objective, the work raises questions about a possible standard of the ²⁴¹AmLi and about the lack of work with the ²⁴¹AmF.

Keywords: nuclear physics, neutron metrology, neutron spectrometry, bonner sphere spectrometers

Procedia PDF Downloads 102
2163 Estimation of Sediment Transport into a Reservoir Dam

Authors: Kiyoumars Roushangar, Saeid Sadaghian

Abstract:

Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.

Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction

Procedia PDF Downloads 496
2162 Synthesis and Biological Activity Evaluation of U Complexes

Authors: Mohammad Kazem Mohammadi

Abstract:

The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.

Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D

Procedia PDF Downloads 470
2161 How Acupuncture Improve Migraine: A Literature Review

Authors: Hsiang-Chun Lai, Hsien-Yin Liao, Yi-Wen Lin

Abstract:

Migraine is a primary headache disorder which presented as recurrent and moderate to severe headaches and affects nearly fifteen percent of people’s daily life. In East Asia, acupuncture is a common treatment for migraine prevention. Acupuncture can modulate migraine through both peripheral and central mechanism and decrease the allodynia process. Molecular pathway suggests that acupuncture relief migraine by regulating neurotransmitters/neuromodulators. This process was also proven by neural imaging. Acupuncture decrease the headache frequency and intensity compared to routine care. We also review the most common chosen acupoints to treat migraine and its treatment protocol. As a result, we suggested that acupuncture can serve as an option to migraine treatment and prevention. However, more studies are needed to establish the mechanism and therapeutic roles of acupuncture in treating migraine.

Keywords: acupuncture, allodynia, headache, migraine

Procedia PDF Downloads 265
2160 In vitro and in vivo Infectivity of Coxiella burnetii Strains from French Livestock

Authors: Joulié Aurélien, Jourdain Elsa, Bailly Xavier, Gasqui Patrick, Yang Elise, Leblond Agnès, Rousset Elodie, Sidi-Boumedine Karim

Abstract:

Q fever is a worldwide zoonosis caused by the gram-negative obligate intracellular bacterium Coxiella burnetii. Following the recent outbreaks in the Netherlands, a hyper virulent clone was found to be the cause of severe human cases of Q fever. In livestock, Q fever clinical manifestations are mainly abortions. Although the abortion rates differ between ruminant species, C. burnetii’s virulence remains understudied, especially in enzootic areas. In this study, the infectious potential of three C. burnetii isolates collected from French farms of small ruminants were compared to the reference strain Nine Mile (in phase II and in an intermediate phase) using an in vivo (CD1 mice) model. Mice were challenged with 105 live bacteria discriminated by propidium monoazide-qPCR targeting the icd-gene. After footpad inoculation, spleen and popliteal lymph node were harvested at 10 days post-inoculation (p.i). The strain invasiveness in spleen and popliteal nodes was assessed by qPCR assays targeting the icd-gene. Preliminary results showed that the avirulent strains (in phase 2) failed to pass the popliteal barrier and then to colonize the spleen. This model allowed a significant differentiation between strain’s invasiveness on biological host and therefore identifying distinct virulence profiles. In view of these results, we plan to go further by testing fifteen additional C. burnetii isolates from French farms of sheep, goat and cattle by using the above-mentioned in vivo model. All 15 strains display distant MLVA (multiple-locus variable-number of tandem repeat analysis) genotypic profiles. Five of the fifteen isolates will bee also tested in vitro on ovine and bovine macrophage cells. Cells and supernatants will be harvested at day1, day2, day3 and day6 p.i to assess in vitro multiplication kinetics of strains. In conclusion, our findings might help the implementation of surveillance of virulent strains and ultimately allow adapting prophylaxis measures in livestock farms.

Keywords: Q fever, invasiveness, ruminant, virulence

Procedia PDF Downloads 361
2159 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia

Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar

Abstract:

Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.

Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition

Procedia PDF Downloads 220
2158 Global Analysis of HIV Virus Models with Cell-to-Cell

Authors: Hossein Pourbashash

Abstract:

Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters.

Keywords: HIV virus model, cell-to-cell transmission, global stability, Lyapunov function, second compound matrices

Procedia PDF Downloads 517
2157 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 347
2156 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 357
2155 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 318
2154 The Effect of SIAH1 on PINK1 Homeostasis in Parkinson Disease

Authors: Fatimah Abd Elghani, Raymonde Szargel, Vered Shani, Hazem Safory, Haya Hamza, Mor Savyon, Ruth Rott, Rina Bandopadhyay, Simone Engelender

Abstract:

Background: PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson’s disease. Down regulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Although PINK1 has a predicted mitochondrial import sequence, it’s cellular, and submitochondrial localization remains unclear, in part because it is rapidly degraded. In this work, we investigated the mechanisms involved in PINK1 degradation and how this may affect PINK1 stability and function, with implications for mitochondrial function in PD. In addition, pharmacological inhibition of proteasome activity was shown to lead to PINK1 accumulation, indicating that PINK1 degradation depends on the ubiquitin-proteasome system (UPS). Methods: Using co-immunoprecipitation assays, we identified E3 ubiquitin ligase SIAH1 as a PINK1-interacting protein in HEK293 cells as well as on rat brain tissues. In addition, we determined the effect of SIAH 1, SIAH2 and Parkin on PINK1 steady-state levels by Western blot analysis, and checked their possibility to ubiquitinate and mediate PINK1 degradation through the proteasome carried out in vivo ubiquitination experiments. Results: We have obtained results showing that SIAH-1 interacts with and ubiquitinates PINK1. The ubiquitination promoted by SIAH-1 leads to the proteasomal degradation of PINK1. We confirmed these findings by knocking down SIAH-1 and observing important accumulation of PINK1 in cells. Besides, we found that SIAH-1 decreases PINK1 steady-state levels but not the E3 ligase Parkin. We also investigated the interaction of SIAH-1 with PINK1 disease mutants and its ability to promote their ubiquitination and degradation. Although, no clear difference in the ability of SIAH-1 to promote the degradation of PINK1 disease mutants was observed. It is possible that dysfunction of proteasomal activity in the disease may lead to the accumulation and aggregation of ubiquitinated PINK1 in patients with PINK1 mutations, with possible implications to the pathogenesis of PD. Conclusions: Here, we demonstrated that SIAH-1 ubiquitinates and promotes the degradation of PINK1. In addition, SIAH-1 represents now a target that may help the improvement of mitophagy in PD. Further investigations needed to understand how mitophagy is regulated by PINK1-SIAH-1 axis to provide targets for future therapeutics.

Keywords: PD, Parkinson's disease, PINK1, PTEN-induced kinase1, SIAH, seven in absentia homolog, SN, substantia nigra

Procedia PDF Downloads 142
2153 Forecasting Solid Waste Generation in Turkey

Authors: Yeliz Ekinci, Melis Koyuncu

Abstract:

Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.

Keywords: forecast, solid waste generation, solid waste management, Turkey

Procedia PDF Downloads 507
2152 Physiochemical and Histological Study on the Effect of the Hibernation on the Liver of Uromastyx acanthinura (Bell, 1825)

Authors: Youssef. K. A. Abdalhafid, Ezaldin A. M. Mohammed, Masoud M. M. Zatout

Abstract:

This study described the changes in the liver of Uromastyx acanthinura (Bell, 1825) males and females during hibernation and activity seasons. The results revealed that, hibernation causes increase fatty liver and pigment cells with abundant damage, comparing with nearly normal structure and less fatty liver after the hibernation with almost normal pattern. Genomic DNA showed apparent separation during hibernation. Also, caspase 3 and caspase 7 activity reached a high level in the liver tissue during hibernation comparing with activity season.

Keywords: histological liver, DNA fragmentation, hibernation, caspase 3 and caspase 7

Procedia PDF Downloads 317
2151 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
2150 Barriers and Facilitators for Telehealth Use during Cervical Cancer Screening and Care: A Literature Review

Authors: Reuben Mugisha, Stella Bakibinga

Abstract:

The cervical cancer burden is a global threat, but more so in low income settings where more than 85% of mortality cases occur due to lack of sufficient screening programs. There is consequently a lack of early detection of cancer and precancerous cells among women. Studies show that 3% to 35% of deaths could have been avoided through early screening depending on prognosis, disease progression, environmental and lifestyle factors. In this study, a systematic literature review is undertaken to understand potential barriers and facilitators as documented in previous studies that focus on the application of telehealth in cervical cancer screening programs for early detection of cancer and precancerous cells. The study informs future studies especially those from low income settings about lessons learned from previous studies and how to be best prepared while planning to implement telehealth for cervical cancer screening. It further identifies the knowledge gaps in the research area and makes recommendations. Using a specified selection criterion, 15 different articles are analyzed based on the study’s aim, theory or conceptual framework used, method applied, study findings and conclusion. Results are then tabulated and presented thematically to better inform readers about emerging facts on barriers and facilitators to telehealth implementation as documented in the reviewed articles, and how they consequently lead to evidence informed conclusions that are relevant to telehealth implementation for cervical cancer screening. Preliminary findings of this study underscore that use of low cost mobile colposcope is an appealing option in cervical cancer screening, particularly when coupled with onsite treatment of suspicious lesions. These tools relay cervical images to the online databases for storage and retrieval, they permit integration of connected devices at the point of care to rapidly collect clinical data for further analysis of the prevalence of cervical dysplasia and cervical cancer. Results however reveal the need for population sensitization prior to use of mobile colposcopies among patients, standardization of mobile colposcopy programs across screening partners, sufficient logistics and good connectivity, experienced experts to review image cases at the point-of-care as important facilitators to the implementation of mobile colposcope as a telehealth cervical cancer screening mechanism.

Keywords: cervical cancer screening, digital technology, hand-held colposcopy, knowledge-sharing

Procedia PDF Downloads 221
2149 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: metallurgical grade silicon, solar grade silicon, impurity, refining, plasma

Procedia PDF Downloads 496
2148 Defect Modes in Multilayered Piezoelectric Structures

Authors: D. G. Piliposyan

Abstract:

Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.

Keywords: piezoelectric layered structure, periodic phononic crystal, bandgap, bloch waves

Procedia PDF Downloads 224
2147 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 351
2146 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
2145 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111
2144 Anti-Acanthamoeba Activities of Fatty Acid Salts and Fatty Acids

Authors: Manami Masuda, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives: Fatty acid salts are a type of anionic surfactant and are produced from fatty acids and alkali. Moreover, fatty acid salts are known to have potent antibacterial activities. Acanthamoeba is ubiquitously distributed in the environment including sea water, fresh water, soil and even from the air. Although generally free-living, Acanthamoeba can be an opportunistic pathogen, which could cause a potentially blinding corneal infection known as Acanthamoeba keratitis. So, in this study, we evaluated the anti-amoeba activity of fatty acid salts and fatty acids to Acanthamoeba castellanii ATCC 30010. Materials and Methods: The antibacterial activity of 9 fatty acid salts (potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K), linolenate (C18:3K)) tested on cells of Acanthamoeba castellanii ATCC 30010. Fatty acid salts (concentration of 175 mM and pH 10.5) were prepared by mixing the fatty acid with the appropriate amount of KOH. The amoeba suspension mixed with KOH with a pH adjusted solution was used as the control. Fatty acids (concentration of 175 mM) were prepared by mixing the fatty acid with Tween 80 (20 %). The amoeba suspension mixed with Tween 80 (20 %) was used as the control. The anti-amoeba method, the amoeba suspension (3.0 × 104 cells/ml trophozoites) was mixed with the sample of fatty acid potassium (final concentration of 175 mM). Samples were incubated at 30°C, for 10 min, 60 min, and 180 min and then the viability of A. castellanii was evaluated using plankton counting chamber and trypan blue stainings. The minimum inhibitory concentration (MIC) against Acanthamoeba was determined using the two-fold dilution method. The MIC was defined as the minimal anti-amoeba concentration that inhibited visible amoeba growth following incubation (180 min). Results: C8K, C10K, and C12K were the anti-amoeba effect of 4 log-unit (99.99 % growth suppression of A. castellanii) incubated time for 180 min against A. castellanii at 175mM. After the amoeba, the suspension was mixed with C10K or C12K, destroying the cell membrane had been observed. Whereas, the pH adjusted control solution did not exhibit any effect even after 180 min of incubation with A. castellanii. Moreover, C6, C8, and C18:3 were the anti-amoeba effect of 4 log-unit incubated time for 60 min. C4 and C18:2 exhibited a 4-log reduction after 180 min incubation. Furthermore, the minimum inhibitory concentration (MIC) was determined. The MIC of C10K, C12K and C4 were 2.7 mM. These results indicate that C10K, C12K and C4 have high anti-amoeba activity against A. castellanii and suggest C10K, C12K and C4 have great potential for antimi-amoeba agents.

Keywords: Fatty acid salts, anti-amoeba activities, Acanthamoeba, fatty acids

Procedia PDF Downloads 479
2143 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay

Authors: Zhen Cao, Yu Zhu, Junxue Fu

Abstract:

Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.

Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration

Procedia PDF Downloads 103
2142 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling

Authors: Danlei Yang, Luofeng Huang

Abstract:

The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.

Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence

Procedia PDF Downloads 8
2141 Navigating Neural Pathways to Success with Students on the Autism Spectrum

Authors: Panda Krouse

Abstract:

This work is a marriage of the science of Applied Behavioral Analysis and an educator’s look at Neuroscience. The focus is integrating what we know about the anatomy of the brain in autism and evidence-based practices in education. It is a bold attempt to present links between neurological research and the application of evidence-based practices in education. In researching for this work, no discovery of articles making these connections was made. Consideration of the areas of structural differences in the brain are aligned with evidence-based strategies. A brief literary review identifies how identified areas affect overt behavior, which is what, as educators, is what we can see and measure. Giving further justification and validation of our practices in education from a second scientific field is significant for continued improvement in intervention for students on the autism spectrum.

Keywords: autism, evidence based practices, neurological differences, education intervention

Procedia PDF Downloads 67
2140 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach

Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier

Abstract:

Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.

Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube

Procedia PDF Downloads 154
2139 Spatial Cognition and 3-Dimensional Vertical Urban Design Guidelines

Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma

Abstract:

The main focus of this paper is to propose a comprehensive framework for the cognitive measurement and modelling of the built environment. This will involve exploring and measuring neural mechanisms. The aim is to create a foundation for further studies in this field that are consistent and rigorous. Additionally, this framework will facilitate collaboration with cognitive neuroscientists by establishing a shared conceptual basis. The goal of this research is to develop a human-centric approach for urban design that is scientific and measurable, producing a set of urban design guidelines that incorporate cognitive measurement and modelling. By doing so, the broader intention is to design urban spaces that prioritize human needs and well-being, making them more liveable.

Keywords: vertical urbanism, human centric design, spatial cognition and psychology, vertical urban design guidelines

Procedia PDF Downloads 83