Search results for: high-dimensional data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42091

Search results for: high-dimensional data analysis

39331 Analysis on Cyber Threat Actors Targeting Automated Border Security Systems

Authors: Mirko Sailio

Abstract:

Border crossing automatization reduces required human resources in handling people crossing borders. As technology replaces and augments the work done by border officers, new cyber threats arise to threaten border security. This research analyses the current cyber threat actors and their capabilities. The analysis is conducted by gathering the threat actor data from a wide range of public sources. A model for a general border automatization system is presented, and its most significant cyber-security attributes are then compared to threat actor activity and capabilities in order to predict priorities in securing such systems. Organized crime and nation-state actors present the clearest threat to border cyber-security, and additional focus is given to their motivations and activities.

Keywords: border automation, cyber-security, threat actors, border cyber-security

Procedia PDF Downloads 203
39330 Evaluating the Performance of 28 EU Member Countries on Health2020: A Data Envelopment Analysis Evaluation of the Successful Implementation of Policies

Authors: Elias K. Maragos, Petros E. Maravelakis, Apostolos I. Linardis

Abstract:

Health2020 is a promising framework of policies provided by the World Health Organization (WHO) and aiming to diminish the health and well-being inequalities among the citizens of the European Union (EU) countries. The major demographic, social and environmental changes, in addition to the resent economic crisis prevent the unobstructed and successful implementation of this framework. The unemployment rates and the percentage of people at risk of poverty have increased among the citizens of EU countries. At the same time, the adopted fiscal, economic policies do not help governments to serve their social role and mitigate social and health inequalities. In those circumstances, there is a strong pressure to organize all health system resources efficiently and wisely. In order to provide a unified and value-based framework of valuation, we propose a valuation framework using data envelopment analysis (DEA) and dynamic DEA. We believe that the adopted methodology could provide a robust tool which can capture the degree of success with which policies have been implemented and is capable to determine which of the countries developed the requested policies efficiently and which of the countries have been lagged. Using the proposed methodology, we evaluated the performance of 28 EU member-countries in relation to the Health2020 peripheral targets. We adopted several versions of evaluation, measuring the effectiveness and the efficiency of EU countries from 2011 to 2016. Our results showed stability in technological changes and revealed a group of countries which were benchmarks in most of the years for the inefficient countries.

Keywords: DEA, Health2020, health inequalities, malmquist index, policies evaluation, well-being

Procedia PDF Downloads 143
39329 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence

Authors: Francesca Radice

Abstract:

Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.

Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation

Procedia PDF Downloads 78
39328 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 351
39327 Analysis of Scholarly Communication Patterns in Korean Studies

Authors: Erin Hea-Jin Kim

Abstract:

This study aims to investigate scholarly communication patterns in Korean studies, which focuses on all aspects of Korea, including history, culture, literature, politics, society, economics, religion, and so on. It is called ‘national study or home study’ as the subject of the study is itself, whereas it is called ‘area study’ as the subject of the study is others, i.e., outside of Korea. Understanding of the structure of scholarly communication in Korean studies is important since the motivations, procedures, results, or outcomes of individual studies may be affected by the cooperative relationships that appear in the communication structure. To this end, we collected 1,798 articles with the (author or index) keyword ‘Korean’ published in 2018 from the Scopus database and extracted the institution and country of the authors using a text mining technique. A total of 96 countries, including South Korea, was identified. Then we constructed a co-authorship network based on the countries identified. The indicators of social network analysis (SNA), co-occurrences, and cluster analysis were used to measure the activity and connectivity of participation in collaboration in Korean studies. As a result, the highest frequency of collaboration appears in the following order: S. Korea with the United States (603), S. Korea with Japan (146), S. Korea with China (131), S. Korea with the United Kingdom (83), and China with the United States (65). This means that the most active participants are S. Korea as well as the USA. The highest rank in the role of mediator measured by betweenness centrality appears in the following order: United States (0.165), United Kingdom (0.045), China (0.043), Japan (0.037), Australia (0.026), and South Africa (0.023). These results show that these countries contribute to connecting in Korean studies. We found two major communities among the co-authorship network. Asian countries and America belong to the same community, and the United Kingdom and European countries belong to the other community. Korean studies have a long history, and the study has emerged since Japanese colonization. However, Korean studies have never been investigated by digital content analysis. The contributions of this study are an analysis of co-authorship in Korean studies with a global perspective based on digital content, which has not attempted so far to our knowledge, and to suggest ideas on how to analyze the humanities disciplines such as history, literature, or Korean studies by text mining. The limitation of this study is that the scholarly data we collected did not cover all domestic journals because we only gathered scholarly data from Scopus. There are thousands of domestic journals not indexed in Scopus that we can consider in terms of national studies, but are not possible to collect.

Keywords: co-authorship network, Korean studies, Koreanology, scholarly communication

Procedia PDF Downloads 158
39326 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 247
39325 The Effect of Core Training on Physical Fitness Characteristics in Male Volleyball Players

Authors: Sibel Karacaoglu, Fatma Ç. Kayapinar

Abstract:

The aim of the study is to investigate the effect of the core training program on physical fitness characteristics and body composition in male volleyball players. 26 male university volleyball team players aged between 19 to 24 years who had no health problems and injury participated in the study. Subjects were divided into training (TG) and control groups (CG) as randomly. Data from twenty-one players who completed all training sessions were used for statistical analysis (TG,n=11; CG,n=10). A core training program was applied to the training group three days a week for 10 weeks. On the other hand, the control group did not receive any training. Before and after the 10-week training program, pre- and post-testing comprised of body composition measurements (weight, BMI, bioelectrical impedance analysis) and physical fitness measurements including flexibility (sit and reach test), muscle strength (back, leg and grip strength by dynamometer), muscle endurance (sit-ups and push-ups tests), power (one-legged jump and vertical jump tests), speed (20m sprint, 30m sprint) and balance tests (one-legged standing test) were performed. Changes of pre- and post- test values of the groups were determined by using dependent t test. According to the statistical analysis of data, no significant difference was found in terms of body composition in the both groups for pre- and post- test values. In the training group, all physical fitness measurements improved significantly after core training program (p<0.05) except 30m speed and handgrip strength (p>0.05). On the hand, only 20m speed test values improved after post-test period (p<0.05), but the other physical fitness tests values did not differ (p>0.05) between pre- and post- test measurement in the control group. The results of the study suggest that the core training program has positive effect on physical fitness characteristics in male volleyball players.

Keywords: body composition, core training, physical fitness, volleyball

Procedia PDF Downloads 346
39324 Factors Affecting Residential Satisfaction in Low-Income Housing: Case Study of War College Housing in Gwarinpa Estate-Abuja, Nigeria

Authors: Abdulmajeed Mustapha, Murat Sahin, Ebru Karahan

Abstract:

Low-income housing for poor people in urban areas is a global challenge, especially in developing countries. The quality of construction of mass housing is oftentimes compromised, thus resulting in a housing deficit, thereby affecting the residential satisfaction of users. This research analyses the various factors affecting residential satisfaction in War College Housing Estate, Abuja, Nigeria. These were investigated using parameters such as environmental characteristics and public amenities such as public benefits, safety/security, and sociodemographic characteristics. The study adopted a quantitative approach for the data gathering through literature reviews within the topic’s scope. The survey was conducted between April to May 2021 using a questionnaire form that was distributed to household members, onsite analysis within the selected housing project, and interviews with a few professionals within the field of this research. Data gathered from the survey and analysis on housing and sociodemographic characteristics, amongst others, were acquired through the means of interviews and site surveys of the selected Housing Estate. Findings from the various characteristics determining satisfaction revealed that residents had varying levels of satisfaction, ranging from a scale of satisfied to dissatisfied. It is recommended that the government come up with policies that will not only make the environment clean and safe but also make sure that the needs of the people who live there are taken into account. This will help the people who live there be more satisfied with their homes.

Keywords: residential satisfaction, neighborhood satisfaction, low-income housing, socio-demographic characteristics, Nigeria

Procedia PDF Downloads 97
39323 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 103
39322 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy

Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii

Abstract:

Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.

Keywords: stress, self-efficacy, child obesity, depression

Procedia PDF Downloads 71
39321 Dynamics of Marital Status and Information Search through Consumer Generated Media: An Exploratory Study

Authors: Shivkumar Krishnamurti, Ruchi Agarwal

Abstract:

The study examines the influence of marital status on consumers of products and services using blogs as a source of information. A pre-designed questionnaire was used to collect the primary data from the respondents (experiences). Data were collected from one hundred and eighty seven respondents residing in and around the Emirates of Sharjah and Dubai of the United Arab Emirates. The collected data was analyzed with the help of statistical tools such as averages, percentages, factor analysis, student’s t-test and structural equation modeling technique. Objectives of the study are to know the reasons how married and unmarried or single consumers of products and services are motivated to use blogs as a source of information, to know whether the consumers of products and services irrespective of their marital status share their views and experiences with other bloggers and to know the respondents’ future intentions towards blogging. The study revealed the following: Majority of the respondents have the motivation to blog because they are willing to receive comments on what they post about services, convenience of blogs to search for information about services and products, by blogging respondents share information on the symptoms of a disease/ disorder that may be experienced by someone, helps to share information about ready to cook mix products and are keen to spend more time blogging in the future.

Keywords: blog, consumer, information, marital status

Procedia PDF Downloads 385
39320 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 44
39319 An Analysis of Anxious/Depressed Behaviors of Chinese Adolescents

Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgiana Duarte

Abstract:

This study explored early adolescents’ anxious and depressed syndromes in Northeast China. Specifically, the study examined anxious and depressed behaviors and the relationship to education environments. The purpose is to examine how the elements of educational environments and the early adolescents’ behaviors as independent variables influence and possibly predict the early adolescents’ anxious/depressed problems. Achenbach System of Empirically Based Assessment (ASEBA), was the instrument, used in collection of data. A stratified sampling method was utilized to collect data from 2532 participants in seven schools. The results indicated that several background variables influenced anxious/depressed problem. Specifically, age, grade, sports activities and hobbies had a relationship with the anxious/depressed variable.

Keywords: anxious/depressed problems, CBCL, empirically-based assessment, internalizing problems

Procedia PDF Downloads 324
39318 The Causal Relationships between Educational Environments and Rule-Breaking Behavior Issues in Early Adolescence

Authors: Zhidong Zhang, Zhi-Chao Zhang

Abstract:

This study focused on early adolescent rule-breaking behavioral problems using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the rule-breaking behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 2532 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a path analysis method was used to explore the correlational and causal relationships among background variables and breaking behavior variables.

Keywords: ASEBA, rule-breaking, path analysis, early adolescent

Procedia PDF Downloads 379
39317 Dental Students' Acquired Knowledge of the Pre-Contemplation Stage of Change

Authors: S. Curtin, A. Trace

Abstract:

Introduction: As patients can often be ambivalent about or resistant to any change in their smoking behavior the traditional ‘5 A’ model may be limited as it assumes that patients are ready and motivated to change. However, there is a stage model that is helpful to give guidance for dental students: the Transtheoretical Model (TTM). This model allows students to understand the tasks and goals for the pre-contemplation stage. The TTM was introduced in early stages as a core component of a smoking cessation programme that was integrated into a Behavioral Science programme as applied to dentistry. The aim of the present study is to evaluate and illustrate the students’ current level of knowledge from the questions the students generated in order to engage patients in the tasks and goals of the pre-contemplation stage. Method: N=47 responses of fifth-year undergraduate dental students. These responses were the data set for this study and related to their knowledge base of appropriate questions for a dentist to ask at the pre-contemplation stage of change. A deductive -descriptive analysis was conducted on the data. The goals and tasks of the pre-contemplation stage of the TTM provided a template for this deductive analysis. Results: 51% of students generated relevant, open, exploratory questions for the pre-contemplation stage, whilst 100% of students generated closed questions. With regard to those questions appropriate for the pre-contemplation stage, 19% were open and exploratory, while 66% were closed questions. A deductive analysis of the open exploratory questions revealed that 53% of the questions addressed increased concern about the current pattern of behavior, 38% of the questions concerned increased awareness of a need for change and only 8% of the questions dealt with the envisioning of the possibility of change. Conclusion: All students formulated relevant questions for the pre-contemplation stage, and half of the students generated the open, exploratory questions that increased patients’ awareness of the need to change. More training is required to facilitate a shift in the formulation from closed to open questioning, especially given that, traditionally, smoking cessation was modeled on the ‘5 As’, and that the general training for dentists supports an advisory and directive approach.

Keywords: behaviour change, pre-contemplation stage, trans-theoretical model, undergraduate dentistry students

Procedia PDF Downloads 413
39316 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
39315 Flood Risk Assessment in the Niger River Basin in Support of the Conception of a Flood Risk Management Plan: Case Study of the District of Malanville, Benin

Authors: Freddy Houndekindo

Abstract:

A study was carried out to evaluate the flood risk in the district of Malanville located along the Niger River. The knowledge produce by this study is useful in the implementation of adaptation and/or mitigation measures to alleviate the impact of the flooding on the populations, the economy and the environment. Over the course of the study, the lack of data in the area of interest has been one of the main challenges encountered. Therefore, in the analysis of the flood hazard different sources of remotely sensed data were used. Moreover, the flood hazard was analysed by applying a 1D hydraulic model: HEC-RAS. After setting up the model for the study area, the different flood scenarios considered were simulated and mapped using ArcGIS and the HEC-GEORAS extension. The result of the simulation gave information about the inundated areas and the water depths at each location. From the analysis of the flood hazard, it was found that between 47% and 50% of the total area of the district of Malanville would be flooded in the different flood scenarios considered, and the water depth varies between 1 and 7 m. The townships of Malanville most at risk of flooding are Momkassa and Galiel, located in a high-risk and very high-risk zone, respectively. Furthermore, the assessment of the flood risk showed that the most vulnerable sector to the inundations is the agricultural sector. Indeed, the cultivated floodplains were the most affected areas by the floodwater in every flood scenarios. Knowing that a high proportion of the population of the district relies on their farmlands in these floodplains for their livelihood, the floods pose a challenge not only to the food security in the area but also to its development.

Keywords: flood risk management, Niger, remote sensing, vulnerability

Procedia PDF Downloads 153
39314 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
39313 Assessing the Social Impacts of Regional Services: The Case of a Portuguese Municipality

Authors: A. Camões, M. Ferreira Dias, M. Amorim

Abstract:

In recent years, the social economy is increasingly seen as a viable means to address social problems. Social enterprises, as well as public projects and initiatives targeted to meet social purposes, offer organizational models that assume heterogeneity, flexibility and adaptability to the ‘real world and real problems’. Despite the growing popularity of social initiatives, decision makers still face a paucity in what concerns the available models and tools to adequately assess its sustainability, and its impacts, notably the nature of its contribution to economic growth. This study was carried out at the local level, by analyzing the social impact initiatives and projects promoted by the Municipality of Albergaria-a-Velha (Câmara Municipal de Albergaria-a-Velha -CMA), a municipality of 25,000 inhabitants in the central region of Portugal. This work focuses on the challenges related to the qualifications and employability of citizens, which stands out as one of the key concerns in the Portuguese economy, particularly expressive in the context of small-scale cities and inland territories. The study offers a characterization of the Municipality, its socio-economic structure and challenges, followed by an exploratory analysis of multiple sourced data, collected from the CMA's documental sources as well as from privileged informants. The purpose is to conduct detailed analysis of the CMA's social projects, aimed at characterizing its potential impact for the model of qualifications and employability of the citizens of the Municipality. The study encompasses a discussion of the socio-economic profile of the municipality, notably its asymmetries, the analysis of the social projects and initiatives, as well as of data derived from inquiry actors involved in the implementation of the social projects and its beneficiaries. Finally, the results obtained with the Better Life Index will be included. This study makes it possible to ascertain if what is implicit in the literature goes to the encounter of what one experiences in reality.

Keywords: measurement, municipalities, social economy, social impact

Procedia PDF Downloads 134
39312 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 42
39311 Education for Sustainable Development Pedagogies: Examining the Influences of Context on South African Natural Sciences and Technology Teaching and Learning

Authors: A. U. Ugwu

Abstract:

Post-Apartheid South African education system had witnessed waves of curriculum reforms. Accordingly, there have been evidences of responsiveness towards local and global challenges of sustainable development over the past decade. In other words, the curriculum shows sensitivity towards issues of Sustainable Development (SD). Moreover, the paradigm of Sustainable Development Goals (SDGs) was introduced by the UNESCO in year 2015. The SDGs paradigm is essentially a vision towards actualizing sustainability in all aspects of the global society. Education for Sustainable Development (ESD) in retrospect entails teaching and learning to actualize the intended UNESCO 2030 SDGs. This paper explores how teaching and learning of ESD can be improved, by drawing from local context of the South African schooling system. Preservice natural sciences and technology teachers in their 2nd to 4th years of study at a university’s college of education in South Africa were contacted as participants of the study. Using qualitative case study research design, the study drew from the views and experiences of five (5) purposively selected participants from a broader study, aiming to closely understating how ESD is implemented pedagogically in teaching and learning. The inquiry employed questionnaires and a focus group discussion as qualitative data generation tools. A qualitative data analysis of generated data was carried out using content and thematic analysis, underpinned by interpretive paradigm. The result of analyzed data, suggests that ESD pedagogy at the location where this research was conducted is largely influenced by contextual factors. Furthermore, the result of the study shows that there is a critical need to employ/adopt local experiences or occurrences while teaching sustainable development. Certain pedagogical approaches such as the use of videos relative to local context should also be considered in order to achieve a more realistic application. The paper recommends that educational institutions through teaching and learning should implement ESD by drawing on local contexts and problems, thereby foregrounding constructivism, appreciating and fostering students' prior knowledge and lived experiences.

Keywords: context, education for sustainable development, natural sciences and technology preservice teachers, qualitative research, sustainable development goals

Procedia PDF Downloads 169
39310 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 369
39309 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

Authors: Shivalinge Gowda

Abstract:

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.

Keywords: mass attenuation coefficient, atomic cross-section, effective atomic number, electron density

Procedia PDF Downloads 377
39308 Digitalised Welfare: Systems for Both Seeing and Working with Mess

Authors: Amelia Morris, Lizzie Coles-Kemp, Will Jones

Abstract:

This paper examines how community welfare initiatives transform how individuals use and experience an ostensibly universal welfare system. This paper argues that the digitalisation of welfare overlooks the complex reality of being unemployed or in low-wage work, and erects digital barriers to accessing welfare. Utilising analysis of ethnographic research in food banks and community groups, the paper explores the ways that Universal Credit has not abolished face-to-face support, but relocated it to unofficial sites of welfare. The apparent efficiency and simplicity of the state’s digital welfare apparatus, therefore, is produced not by reducing the ‘messiness’ of welfare, but by rendering it invisible within the digital framework. Using the analysis of the study’s data, this paper recommends three principles of service design that would render the messiness visible to the state.

Keywords: welfare, digitalisation, food bank, Universal Credit

Procedia PDF Downloads 152
39307 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 406
39306 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project

Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen

Abstract:

This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.

Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project

Procedia PDF Downloads 168
39305 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350
39304 Geographic Information System and Ecotourism Sites Identification of Jamui District, Bihar, India

Authors: Anshu Anshu

Abstract:

In the red corridor famed for the Left Wing Extremism, lies small district of Jamui in Bihar, India. The district lies at 24º20´ N latitude and 86º13´ E longitude, covering an area of 3,122.8 km2 The undulating topography, with widespread forests provides pristine environment for invigorating experience of tourists. Natural landscape in form of forests, wildlife, rivers, and cultural landscape dotted with historical and religious places is highly purposive for tourism. The study is primarily related to the identification of potential ecotourism sites, using Geographic Information System. Data preparation, analysis and finally identification of ecotourism sites is done. Secondary data used is Survey of India Topographical Sheets with R.F.1:50,000 covering the area of Jamui district. District Census Handbook, Census of India, 2011; ERDAS Imagine and Arc View is used for digitization and the creation of DEM’s (Digital Elevation Model) of the district, depicting the relief and topography and generate thematic maps. The thematic maps have been refined using the geo-processing tools. Buffer technique has been used for the accessibility analysis. Finally, all the maps, including the Buffer maps were overlaid to find out the areas which have potential for the development of ecotourism sites in the Jamui district. Spatial data - relief, slopes, settlements, transport network and forests of Jamui District were marked and identified, followed by Buffer Analysis that was used to find out the accessibility of features like roads, railway stations to the sites available for the development of ecotourism destinations. Buffer analysis is also carried out to get the spatial proximity of major river banks, lakes, and dam sites to be selected for promoting sustainable ecotourism. Overlay Analysis is conducted using the geo-processing tools. Digital Terrain Model (DEM) generated and relevant themes like roads, forest areas and settlements were draped on the DEM to make an assessment of the topography and other land uses of district to delineate potential zones of ecotourism development. Development of ecotourism in Jamui faces several challenges. The district lies in the portion of Bihar that is part of ‘red corridor’ of India. The hills and dense forests are the prominent hideouts and training ground for the extremists. It is well known that any kind of political instability, war, acts of violence directly influence the travel propensity and hinders all kind of non-essential travels to these areas. The development of ecotourism in the district can bring change and overall growth in this area with communities getting more involved in economically sustainable activities. It is a known fact that poverty and social exclusion are the main force that pushes people, resorting towards violence. All over the world tourism has been used as a tool to eradicate poverty and generate good will among people. Tourism, in sustainable form should be promoted in the district to integrate local communities in the development process and to distribute fruits of development with equity.

Keywords: buffer analysis, digital elevation model, ecotourism, red corridor

Procedia PDF Downloads 259
39303 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 130
39302 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 385