Search results for: distance training
3107 The New Media and Their Economic and Socio-Political Imperatives for Africa: A Study of Nigeria
Authors: Chukwukelue Uzodinma Umenyilorah
Abstract:
The advent of the New Media as enabled by information and communication technology from the 19th through the 21st century has no doubt taken its toll on all fronts of human existence; especially in Africa. Apart from shortening the distance between all parts of the world, technology and the new media has also succeeded in making the world a global village. Hence, it is now easy to relay live audio and visual signals across the length and breadth of the world in real time. People now contract and execute businesses across countries, conferences are held and ideas are shared with a simple push of a button. Likewise, political leaders and diplomats are now just a click away from reaching those important decisions that take their country’s fortunes to the next level. On the flip side, ICT and the New Media have also contributed in no small measure in aiding global terrorism and general insecurity around the world. More interesting is the fact that as developing economies, African countries have massively embraced the information technology and this has helped them in keeping up with the trends in the polity of other model democracies around the world. This paper is therefore designed to determine the how much effect ICT and the New Media has exerted on the economic, social and political lives of African. Nigeria shall be used as a case in point for the purpose of this paper.Keywords: Africa, ICT, new media, Nigeria
Procedia PDF Downloads 2573106 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population
Authors: Ye Xue, Zhenhua Deng
Abstract:
Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool
Procedia PDF Downloads 623105 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 1313104 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM
Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen
Abstract:
Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.Keywords: video analysis, people behavior, intelligent building, classification
Procedia PDF Downloads 3793103 Mapping the Early History of Common Law Education in England, 1292-1500
Authors: Malcolm Richardson, Gabriele Richardson
Abstract:
This paper illustrates how historical problems can be studied successfully using GIS even in cases in which data, in the modern sense, is fragmentary. The overall problem under investigation is how early (1300-1500) English schools of Common Law moved from apprenticeship training in random individual London inns run in part by clerks of the royal chancery to become what is widely called 'the Third University of England,' a recognized system of independent but connected legal inns. This paper focuses on the preparatory legal inns, called the Inns of Chancery, rather than the senior (and still existing) Inns of Court. The immediate problem studied in this paper is how the junior legal inns were organized, staffed, and located from 1292 to about 1500, and what maps tell us about the role of the chancery clerks as managers of legal inns. The authors first uncovered the names of all chancery clerks of the period, most of them unrecorded in histories, from archival sources in the National Archives, Kew. Then they matched the names with London property leases. Using ArcGIS, the legal inns and their owners were plotted on a series of maps covering the period 1292 to 1500. The results show a distinct pattern of ownership of the legal inns and suggest a narrative that would help explain why the Inns of Chancery became serious centers of learning during the fifteenth century. In brief, lower-ranking chancery clerks, always looking for sources of income, discovered by 1370 that legal inns could be a source of income. Since chancery clerks were intimately involved with writs and other legal forms, and since the chancery itself had a long-standing training system, these clerks opened their own legal inns to train fledgling lawyers, estate managers, and scriveners. The maps clearly show growth patterns of ownership by the chancery clerks for both legal inns and other London properties in the areas of Holborn and The Strand between 1450 and 1417. However, the maps also show that a royal ordinance of 1417 forbidding chancery clerks to live with lawyers, law students, and other non-chancery personnel had an immediate effect, and properties in that area of London leased by chancery clerks simply stop after 1417. The long-term importance of the patterns shown in the maps is that while the presence of chancery clerks in the legal inns likely created a more coherent education system, their removal forced the legal profession, suddenly without a hostelry managerial class, to professionalize the inns and legal education themselves. Given the number and social status of members of the legal inns, the effect on English education was to free legal education from the limits of chancery clerk education (the clerks were not practicing common lawyers) and to enable it to become broader in theory and practice, in fact, a kind of 'finishing school' for the governing (if not noble) class.Keywords: GIS, law, London, education
Procedia PDF Downloads 1793102 Using Gene Expression Programming in Learning Process of Rough Neural Networks
Authors: Sanaa Rashed Abdallah, Yasser F. Hassan
Abstract:
The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.Keywords: rough sets, gene expression programming, rough neural networks, classification
Procedia PDF Downloads 3883101 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study
Authors: Mazin Mohammed S. Sarhan
Abstract:
This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.Keywords: concrete beam, deflection, ductility, plate
Procedia PDF Downloads 1633100 Total Productive Maintenance (TPM) as a Strategy for Competitiveness
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This research examines the effect of a human resource strategy and the overall equipment effectiveness as well as assessing how the combination of the two can increase a firm’s productivity. The human resource aspect is looked at in detail to assess motivation of operators through training to reduce wastage on the manufacturing shop floor. The waste was attributed to operators, maintenance personal, idle machines, idle manpower and break downs. This work seeks to investigate the concept of Total Productive Maintenance (TPM) in addressing these short comings in the manufacturing case study. The impact of TPM to increase production while, as well as increasing employee morale and job satisfaction is assessed. This can be resource material for practitioners who seek to improve overall equipment efficiency (OEE) to achieve higher level productivity and competitiveness.Keywords: maintenance, TPM, efficiency, productivity, strategy
Procedia PDF Downloads 4223099 Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran
Authors: Samad Alipour, Khadije Mosavi Onlaghi
Abstract:
Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes.Keywords: Urmia Lake, weathering, mineralogy, augite, Iran
Procedia PDF Downloads 2323098 Gingival Myiasis of Dog Caused by Wohlfahrtia magnifica, Garmsar, Iran
Authors: Keivan Jamshidi
Abstract:
Myiasis is defined as the infestation of living tissues of vertebrates by larvae of flies. Gingival myiasis is an uncommon type of myiasis. In oral inspection of a death dog (Garmsar, Iran) for routine training postmortem investigation, gingival myiasis was found. Only one larva was removed from the lesions and sent to a parasitology laboratory for identification. For histopathological studies, affected area of the gingiva was cut and placed in 10% formalin, and then sent to pathology laboratory. On parasitological examination the causative agent of this condition was found as larva of Wohlfahrtia magnifica. Histopathological examination of the injured gingiva showed hyperplasia of squamous epithelial tissue and acanthosis in mucosal membrane, hyperemia and infiltration of mononuclear cells and eosinophils into lamina propria. The present report seems to be the first report of gingival myiasis in dog in Iran.Keywords: Wohlfahrtia magnifica, gingiva, myiasis, dog
Procedia PDF Downloads 5673097 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 633096 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning
Procedia PDF Downloads 3763095 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 813094 An Evaluation Model for Automatic Map Generalization
Authors: Quynhan Tran, Hong Fan, Quockhanh Pham
Abstract:
Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes.Keywords: automatic cartography generalization, evaluation model, geographic feature distribution, minimal spanning tree
Procedia PDF Downloads 6413093 Autism Spectrum Disorder Interventions, Problems and Solutions
Authors: Ammara Jabeen
Abstract:
This survey report aims to find the interventions and their effectiveness that are being used globally as well as in Pakistan to treat autistic kids. ‘Autism spectrum disorder (ASD) is a state associated with brain development that shows ‘how a person perceives and socializes with others, causing problems in social interaction and communication’. Besides these problems, these children suffer from restricted and repetitive behaviors too. The term ‘Spectrum’ in Autism Spectrum Disorder refers to the wide range of symptoms and severity. The main cause of this Autism Spectrum Disorder is not known yet, but the research showed that genetics and environmental factors play important roles. In this survey report, after a literature review, some of the possible solutions are suggested based on the most common problems that these children are currently facing in their daily lives. Based on this report, we are able to overcome the lack of the resources (e.g. language, cost, training etc.) that mostly exist in Pakistani culture.Keywords: autism, interventions, spectrum, disorder
Procedia PDF Downloads 293092 Assessment of Exposure Dose Rate from Scattered X-Radiation during Diagnostic Examination in Nigerian University Teaching Hospital
Authors: Martins Gbenga., Orosun M. M., Olowookere C. J., Bamidele Lateef
Abstract:
Radiation exposures from diagnostic medical examinations are almost always justified by the benefits of accurate diagnosis of possible disease conditions. The aim is to assess the influence of selected exposure parameters on scattered dose rates. The research was carried out using Gamma Scout software installation on the Computer system (Laptop) to record the radiation counts, pulse rate, and dose rate for 136 patients. Seventy-three patients participated in the male category with 53.7%, while 63 females participated with 46.3%. The mean and standard deviation value for each parameter is recorded, and tube potential is within 69.50±11.75 ranges between 52.00 and 100.00, tube current is within 23.20±17.55 ranges between 4.00 and 100.00, focus skin distance is within 73.195±33.99 and ranges between 52.00 and 100.00. Dose Rate (DRate in µSv/hr) is significant at an interval of 0.582 and 0.587 for tube potential and body thickness (cm). Tube potential is significant at an interval of 0.582 and 0.842 of DRate (µSv/hr) and body thickness (cm). The study was compared with other studies. The exposure parameters selected during each examination contributed to scattered radiation. A quality assurance program (QAP) is advised for the center.Keywords: x-radiation, exposure rate, dose rate, tube potentials, scattered radiation, diagnostic examination
Procedia PDF Downloads 1523091 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers
Authors: Sumanta Daw, Gopal Chandra Saha
Abstract:
The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.Keywords: cardio-respiratory efficiency, spirometry, water polo players, sprinters
Procedia PDF Downloads 1383090 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition
Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni
Abstract:
Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.Keywords: BEMD, breast density, contend-based, image retrieval, mammography
Procedia PDF Downloads 2393089 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor
Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun
Abstract:
An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor
Procedia PDF Downloads 3843088 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1463087 The Transformation of the Workplace through Robotics, Artificial Intelligence, and Automation
Authors: Javed Mohammed
Abstract:
Robotics is the fastest growing industry in the world, poised to become the largest in the next decade. The use of robots requires design, application and implementation of the appropriate safety controls in order to avoid creating hazards to production personnel, programmers, maintenance specialists and systems engineers. The increasing use of artificial intelligence (AI) and related technologies in the workplace are dramatically changing the employment landscape. The impact of robotics technology on workplace policy is dramatic and complex. The robotics revolution calls for a comprehensive approach to job training, and retraining, to mitigate worker displacement and enable workers to benefit from the new jobs that the technology will generate. It calls for a thoughtful, forward-thinking approach by lawmakers, regulators and employers to prepare for the oncoming transformation of the workplace and workforce.Keywords: design, artificial intelligence, programmers, system engineers, robotics, transformation
Procedia PDF Downloads 4743086 The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile
Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan
Abstract:
One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety.Keywords: safety coefficient, group pile, slope, stability, FLAC3D software
Procedia PDF Downloads 993085 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management
Authors: Jiří Barta
Abstract:
The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.Keywords: Computer Simulation, Symos97, Spread, Simulation Software, Harmful Substances
Procedia PDF Downloads 3033084 Infant and Young Child Dietary Diversification Using Locally Available Foods after Nutrition Education in Rural Malawi
Authors: G. C. Phiri, E. A. Heil, A. A. Kalimbira, E. Muehlhoff, C. Masangano, B. M. Mtimuni, J. Herrmann, M. B. Krawinkel, I. Jordan
Abstract:
Background and objectives: High prevalence of undernutrition in Malawi is caused by poor complementary foods. Lack of knowledge of age appropriate food within the household might affect utilization of available resources. FAO-Malawi implemented nutrition education (NE) sessions in 200 villages in Kasungu and Mzimba districts from December 2012 to April 2013 targeting 15 caregivers per village of children aged 6-18 months, grandmothers, spouses and community leaders. Two trained volunteers per village facilitated 10 NE sessions on breastfeeding, food safety and hygiene and complementary feeding using locally available resources. This study assessed the reported dietary diversification practices of infant and young child after nutrition education and the factors that influenced adoption of the practice. Methodology: Questionnaire-based interviews with caregivers were conducted in 16 randomly selected villages (n=108) before training-(t1) and seven months after training-(t2). Knowledge score (KS) was calculated on the indicators breastfeeding, hygiene and complementary feeding. Count regression was performed using SPSS 22. Eight focus group discussions (FGDs) were separately conducted among caregivers and grandmothers in 4 villages. Content analysis was used to analyze FGDs data. Results: Following NE, caregivers' KS significantly increased (p<0.001) between t1 and t2 for breastfeeding (7.7 vs. 9.8, max=18), hygiene (3.8 vs. 5.9, max=7) and complementary feeding (10.2 vs. 16.2, max=26). Caregivers indicated that they stopped preparation of plain-refined maize meal porridge after they gained knowledge on dietary diversification of complementary foods. They learnt mushing and pounding of ingredients for enriched porridge. Whole-maize meal or potatoes were often enriched with vegetables, legumes, small fish or eggs and cooking oil. Children liked the taste of enriched porridge. Amount of enriched porridge consumed at each sitting increase among previously fussy-eater children. Meal frequency increased by including fruits as snacks in child’s diet. Grandmothers observed preparation of enriched porridge among the mothers using locally available foods. Grandmothers liked the taste of enriched porridge and not the greenish color of the porridge. Both grandmothers and mothers reported that children were playing independently after consuming enriched porridge and were strong and healthy. These motivated adoption of the practice. Conclusion: Increased knowledge and skill of preparation and utilisation of locally available foods promoted children’s dietary diversification. Children liking the enriched porridge motivated adoption of dietary diversification.Keywords: behaviour change, complementary feeding, dietary diversification, IYCN
Procedia PDF Downloads 4753083 Addressing Supply Chain Data Risk with Data Security Assurance
Authors: Anna Fowler
Abstract:
When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.Keywords: security by design, data security architecture, cybersecurity framework, data security assurance
Procedia PDF Downloads 943082 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3753081 Topology-Based Character Recognition Method for Coin Date Detection
Authors: Xingyu Pan, Laure Tougne
Abstract:
For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.Keywords: coin, detection, character recognition, topology
Procedia PDF Downloads 2553080 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 643079 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time
Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent
Abstract:
The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point
Procedia PDF Downloads 7583078 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.Keywords: palm oil, fatty acid, NIRS, PLSR
Procedia PDF Downloads 214