Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16188

Search results for: spatial information network

13458 The Factors that Effect to User Satisfaction of Information System in Bangkok Hospital

Authors: Somchai Buaroong

Abstract:

This research attempted to study information system success in dimensions of the user satisfaction level and to find the association between the independent factors of the user experiences, user knowledge, and user attitude. The study sample was selected using simple random sampling that comprised of 190 users who had used the Bangkok HIS. The data were reported from 165 questionnaires. The results found that the user satisfaction was at a moderate level, user satisfaction on the information quality and system quality was at a moderate level, while satisfaction on service quality was at a high level. The computer knowledge of the user was at a moderate level, and the user attitude was at a positive level. The participation of the user was at a low level and the participation in decision and in evaluation was at a low level; however participation in implementation and in benefit was at a moderate.

Keywords: information system success, hospital information system, user attitude, user satisfaction

Procedia PDF Downloads 320
13457 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 73
13456 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 92
13455 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 220
13454 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 83
13453 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques

Authors: Mei-Yi Wu, Shang-Ming Huang

Abstract:

The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.

Keywords: mobile image retrieval, text mining, product information service system, online marketing

Procedia PDF Downloads 359
13452 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 374
13451 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 404
13450 Family Cohesion, Social Networks, and Cultural Differences in Latino and Asian American Help Seeking Behaviors

Authors: Eileen Y. Wong, Katherine Jin, Anat Talmon

Abstract:

Background: Help seeking behaviors are highly contingent on socio-cultural factors such as ethnicity. Both Latino and Asian Americans underutilize mental health services compared to their White American counterparts. This difference may be related to the composite of one’s social support system, which includes family cohesion and social networks. Previous studies have found that Latino families are characterized by higher levels of family cohesion and social support, and Asian American families with greater family cohesion exhibit lower levels of help seeking behaviors. While both are broadly considered collectivist communities, within-culture variability is also significant. Therefore, this study aims to investigate the relationship between help seeking behaviors in the two cultures with levels of family cohesion and strength of social network. We also consider such relationships in light of previous traumatic events and diagnoses, particularly post-traumatic stress disorder (PTSD), to understand whether clinically diagnosed individuals differ in their strength of network and help seeking behaviors. Method: An adult sample (N = 2,990) from the National Latino and Asian American Study (NLAAS) provided data on participants’ social network, family cohesion, likelihood of seeking professional help, and DSM-IV diagnoses. T-tests compared Latino American (n = 1,576) and Asian American respondents (n = 1,414) in strength of social network, level of family cohesion, and likelihood of seeking professional help. Linear regression models were used to identify the probability of help-seeking behavior based on ethnicity, PTSD diagnosis, and strength of social network. Results: Help-seeking behavior was significantly associated with family cohesion and strength of social network. It was found that higher frequency of expressing one’s feelings with family significantly predicted lower levels of help-seeking behaviors (β = [-.072], p = .017), while higher frequency of spending free time with family significantly predicted higher levels of help-seeking behaviors (β = [.129], p = .002) in the Asian American sample. Subjective importance of family relations compared to that of one’s peers also significantly predict higher levels of help-seeking behaviors (β = [.095], p = .011) in the Asian American sample. Frequency of sharing one’s problems with relatives significantly predicted higher levels of help-seeking behaviors (β = [.113], p < .01) in the Latino American sample. A PTSD diagnosis did not have any significant moderating effect. Conclusion: Considering the underutilization of mental health services in Latino and Asian American minority groups, it is crucial to understand ways in which help seeking behavior can be encouraged. Our findings suggest that different dimensions within family cohesion and social networks have differential impacts on help-seeking behavior. Given the multifaceted nature of family cohesion and cultural relevance, the implications of our findings for theory and practice will be discussed.

Keywords: family cohesion, social networks, Asian American, Latino American, help-seeking behavior

Procedia PDF Downloads 68
13449 Building Information Models Utilization for Design Improvement of Infrastructure

Authors: Keisuke Fujioka, Yuta Itoh, Masaru Minagawa, Shunji Kusayanagi

Abstract:

In this study, building information models of the underground temporary structures and adjacent embedded pipes were constructed to show the importance of the information on underground pipes adjacent to the structures to enhance the productivity of execution of construction. Next, the bar chart used in actual construction process were employed to make the Gantt chart, and the critical pass analysis was carried out to show that accurate information on the arrangement of underground existing pipes can be used for the enhancement of the productivity of the construction of underground structures. In the analyzed project, significant construction delay was not caused by unforeseeable existence of underground pipes by the management ability of the construction manager. However, in many cases of construction executions in the developing countries, the existence of unforeseeable embedded pipes often causes substantial delay of construction. Design change based on uncertainty on the position information of embedded pipe can be also important risk for contractors in domestic construction. So CPM analyses were performed by a project-management-software to the situation that influence of the tasks causing construction delay was assumed more significant. Through the analyses, the efficiency of information management on underground pipes and BIM analysis in the design stage for workability improvement was indirectly confirmed.

Keywords: building-information modelling, construction information modelling, design improvement, infrastructure

Procedia PDF Downloads 308
13448 A webGIS Methodology to Support Sediments Management in Wallonia

Authors: Nathalie Stephenne, Mathieu Veschkens, Stéphane Palm, Christophe Charlemagne, Jacques Defoux

Abstract:

According to Europe’s first River basin Management Plans (RBMPs), 56% of European rivers failed to achieve the good status targets of the Water Framework Directive WFD. In Central European countries such as Belgium, even more than 80% of rivers failed to achieve the WFD quality targets. Although the RBMP’s should reduce the stressors and improve water body status, their potential to address multiple stress situations is limited due to insufficient knowledge on combined effects, multi-stress, prioritization of measures, impact on ecology and implementation effects. This paper describes a webGis prototype developed for the Walloon administration to improve the communication and the management of sediment dredging actions carried out in rivers and lakes in the frame of RBMPs. A large number of stakeholders are involved in the management of rivers and lakes in Wallonia. They are in charge of technical aspects (client and dredging operators, organizations involved in the treatment of waste…), management (managers involved in WFD implementation at communal, provincial or regional level) or policy making (people responsible for policy compliance or legislation revision). These different kinds of stakeholders need different information and data to cover their duties but have to interact closely at different levels. Moreover, information has to be shared between them to improve the management quality of dredging operations within the ecological system. In the Walloon legislation, leveling dredged sediments on banks requires an official authorization from the administration. This request refers to spatial information such as the official land use map, the cadastral map, the distance to potential pollution sources. The production of a collective geodatabase can facilitate the management of these authorizations from both sides. The proposed internet system integrates documents, data input, integration of data from disparate sources, map representation, database queries, analysis of monitoring data, presentation of results and cartographic visualization. A prototype of web application using the API geoviewer chosen by the Geomatic department of the SPW has been developed and discussed with some potential users to facilitate the communication, the management and the quality of the data. The structure of the paper states the why, what, who and how of this communication tool.

Keywords: sediments, web application, GIS, rivers management

Procedia PDF Downloads 405
13447 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust

Authors: Marina Yurievna Aleksandrova

Abstract:

Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.

Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest

Procedia PDF Downloads 180
13446 Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach

Authors: Maali Kachouri, Anis Jarboui

Abstract:

We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices.

Keywords: simultaneous equations approach, transparency, causal relationship, corporate governance

Procedia PDF Downloads 355
13445 Study of Growth Patterns of the Built-Up Area in Tourism Destinations in Relation to Sustainable Development

Authors: Tagore Sai Priya Nunna, Ankhi Banerjee

Abstract:

The rapid growth of the tourism industry in India in the last few years after the economic crisis in 2009 has been one of the significant causes that led to the Land Use Land Cover change (LULC) of most tourism destinations. The tourist regions are subjected to significant increase in built-up due to increased construction activities for developing accommodation facilities further boosting tourism demand. This research attempts to analyse the changing LULC and the growth pattern of the built-up area within tourist destinations. Four popular tourist destinations, which promises various types of tourism activity and which are significantly dependent on tourism for economic growth, are selected for the study. The study uses remotely sensed data for analysis of land use change through supervised segmentation into five broad classes. Further, the landuse map is reclassified into binary classes to extract the built-up area. The growth patterns of the built-up are analysed in terms of size, shape, direction and form of growth, through a set of spatial metrics. Additionally, a detailed analysis of the existing development pattern corresponding to planned development zones was performed to identify unplanned growth spots in the study regions. The findings of the study provide insights into how tourism has contributed to significant changes in LULC around tourist sites. Also, the study highlights the growth pattern of built-up areas with respect to the type of tourism activity and geographical characteristics. The research attempts to address the need of integrating spatial metrics for the development of sustainable tourism plans as part of the goals of sustainable development.

Keywords: built-up, growth, patterns, tourism, sustainable

Procedia PDF Downloads 115
13444 Characterization of the State of Pollution by Nitrates in the Groundwater in Arid Zones Case of Eloued District (South-East of Algeria)

Authors: Zair Nadje, Attoui Badra, Miloudi Abdelmonem

Abstract:

This study aims to assess sensitivity to nitrate pollution and monitor the temporal evolution of nitrate contents in groundwater using statistical models and map their spatial distribution. The nitrate levels observed in the waters of the town of El-Oued differ from one aquifer to another. Indeed, the waters of the Quaternary aquifer are the richest in nitrates, with average annual contents varying from 6 mg/l to 85 mg/l, for an average of 37 mg/l. These levels are higher than the WHO standard (50 mg/l) for drinking water. At the water level of the Terminal Complex (CT) aquifer, the annual average nitrate levels vary from 14 mg/l to 37 mg/l, with an average of 18 mg/l. In the Terminal Complex, excessive nitrate levels are observed in the central localities of the study area. The spatial distribution of nitrates in the waters of the Quaternary aquifer shows that the majority of the catchment points of this aquifer are subject to nitrate pollution. This study shows that in the waters of the Terminal Complex aquifer, nitrate pollution evolves in two major areas. The first focus is South-North, following the direction of underground flow. The second is West-East, progressing towards the East zone. The temporal distribution of nitrate contents in the water of the Terminal Complex aquifer in the city of El-Oued showed that for decades, nitrate contents have suffered a decline after an increase. This evolution of nitrate levels is linked to demographic growth and the rapid urbanization of the city of El-Oued.

Keywords: anthropogenic activities, groundwater, nitrates, pollution, arid zones city of El-Oued, Algeria

Procedia PDF Downloads 56
13443 Synchronization of Bus Frames during Universal Serial Bus Transfer

Authors: Petr Šimek

Abstract:

This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.

Keywords: analysis, CAN, interface, LIN, synchronization, USB

Procedia PDF Downloads 63
13442 Critical Activity Effect on Project Duration in Precedence Diagram Method

Authors: Salman Ali Nisar, Koshi Suzuki

Abstract:

Precedence Diagram Method (PDM) with its additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activities provides more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in PDM network will have anomalous effect on critical path. Researchers have proposed some classification of critical activity effects. In this paper, we do further study on classifications of critical activity effect and provide more information in detailed. Furthermore, we determine the maximum amount of time for each class of critical activity effect by which the project managers can control the dynamic feature (shortening/lengthening) of critical activities and project duration more efficiently.

Keywords: construction project management, critical path method, project scheduling, precedence diagram method

Procedia PDF Downloads 511
13441 Gendered Effects on Productivity Gap Due to Information Asymmetry

Authors: Shruti Sengupta

Abstract:

According to the nationally representative data, about 73% of India's rural workforce is engaged in agriculture. While women make significant contributions to total agriculture production, they contribute to about one-third in India. In terms of gender composition, about 80% of the female and 69% of the male workforce is engaged in agriculture in rural India. Still, it is common to find gender differences in plot management within the household. In the last two and half years, India's agri-food system has undergone several changes due to this pandemic, both the demand and supply side, making agriculture more information and knowledge-intensive. Therefore, this paper investigates, using a nationally representative sample, how information asymmetry affects the net returns per hectare of land between female and male farm managers. Empirical results show that information intensity has a significant positive effect on net farm returns per hectare. Results suggest that if females have the same access to technical information as their male counterparts, their farm income can go up by .96 pp compared to male-headed farms. Results also indicate that literate females have higher farm incomes than non-literate females. The study contributes to the literature by employing gender differentials in farm income due to the information gap.

Keywords: agriculture, gender, information asymmetry, farm income, social bias

Procedia PDF Downloads 142
13440 Everyday Life Information Seeking among Female Students: A Survey of University and Private Hostels at Lahore

Authors: Sadaf Rafiq, Muhammad Waqas, Shakeel Ahmad Khan, Nisar Ahmad

Abstract:

Everyday life information seeking (ELIS) is considered as the mastery of life. It plays an important role in daily problem solving activities. Female students living in university hostels need variety of information to fulfil their everyday information needs. To find accurate and timely information is really challenging for females students who move from rural areas for educational purposes. These challenges involve culture differences, stress, financial issues, homesickness, diet needs and change in sleeping and eating habits. These complications create numerous problems for female students to adjust themselves in new and unfamiliar environment. Although the Internet has increased the ease of seeking everyday life information to survive successfully but there is still uncertainty to fully rely on the quality of information available on the web. Pakistan is an underdeveloped country where limited budget is allocated for educational institutions to enable them in developing well established hostels for their students. Female students who pursue for higher education has to stay at hostels for years to obtain education goals. It really becomes very difficult for them to spend life in hostels if they are not properly facilitated with relevant information sources to acquire everyday life information. The proposed study attempts to investigate the everyday life information seeking behavior of female students who are living in university and private hostels of Lahore. It investigates the various sources of information used by female students. It also identifies the problems faced by the female students in accessing everyday life information. The results of this study will be helpful for university management to understand their information need and provide required information sources which are essential for them to spend a comfortable, successful and peaceful life in hostels and achieve their educational goals. To achieve the objectives of the study, we will use quantitative research approach by using questionnaire as a data collection tool. The population of this study will be the university students living in public and private hostels of Lahore, Pakistan. This study will increase the understanding of everyday life information seeking behavior of female students living in hostels. Results of the study will be helpful for hostel administrations to better understand the students’ everyday life information needs and provide high quality of information services and living environment.

Keywords: everyday, information seeking, hostel, female

Procedia PDF Downloads 151
13439 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 524
13438 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 439
13437 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 10
13436 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 80
13435 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression

Procedia PDF Downloads 284
13434 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation

Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran

Abstract:

Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.

Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning

Procedia PDF Downloads 490
13433 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 108
13432 The Iraqi Fibre-to-the-Home Networks, Problems, Challenges, and Solutions along with Less Expense

Authors: Hasanein Hasan, Mohammed Al-Taie, Basil Shanshool, Khalaf Abd-Ali

Abstract:

This approach aims to deal with establishing and operating Iraqi Fibre-To-The-Home (FTTH) projects. The problems they suffer from are organized sabotage, vandalism, accidental damage and poor planning. It provides practical solutions that deal with the aforementioned problems. These solutions consist of both technical and financial clarifications that ensure the achievement of the FTTH network’s stability for the purpose of equipping citizens, private sector companies, and governmental institutions with services, data transmission, the Internet, and other services. They aim to solve problems and obstacles accompanying the operation and maintenance of FTTH projects implemented by the Informatics and Telecommunications Public Company (ITPC)/ Iraqi Ministry of Communications (MoC). This approach takes the FTTH network of AlMaalif-AlMuaslat districts/ Baghdad-Iraq as a case study.

Keywords: CCTV, FTTH, ITPC, MoC, NVR, PTZ

Procedia PDF Downloads 82
13431 Audio-Visual Recognition Based on Effective Model and Distillation

Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin

Abstract:

Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.

Keywords: lipreading, audio-visual, Efficientnet, distillation

Procedia PDF Downloads 134
13430 Swelling Behavior of Cross-Linked Poly (2-hydroxyethyl methacrylate)

Authors: Salah Hamri, Tewfik Bouchaour, Ulrich Maschke

Abstract:

The aim of this works is the study of swelling ratio of cross-linked polymer networks poly (2-hydroxyethyl methacrylate) (PHEMA). The system composed of erythrosine and Triethanolamine, in aqueous medium, is used as photo-initiator and 1,6-Hexanediol diacrylate as cross-linker. The analysis of UV-visible and infrared spectra, which were taken at different times during polymerization/cross linking, makes it possible to obtain useful information on the reaction mechanism. The swelling behavior was study by changing the nature of solvent, dye sensitizer (erythrosine, rose Bengal and eosin), and pH of the medium. The exploitation of experimental results using Fick diffusion model is also expected and shows a good correlation between theoretical and experimental results.

Keywords: cross-linker, photo-sensitizer, polymer network, swelling ratio

Procedia PDF Downloads 316
13429 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm

Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh

Abstract:

this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.

Keywords: genetic algorithm, information retrieval, optimal queries, crossover

Procedia PDF Downloads 292