Search results for: transmission loss.
2592 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet
Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci
Abstract:
The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.Keywords: insulator, pollution flashover, high impulse voltage, water jet model
Procedia PDF Downloads 1112591 Promoting the Contructor's Reputation in the Nigerian Construction Industry
Authors: Abdulkadir Adamu Shehu
Abstract:
Company’s reputation is an elusive asset. The reputation gained by companies must be preserved for sustainability of the company. However, the construction project is still suffering from declination of character due to the factors that affect their reputation. The problem led to the loss of projects, abandoning of the projects and many more. This contributed to negative impact on the contractors in the construction industry. As for today, previous studies have not investigated in this regards yet. For that reason, this paper examines the factors which could promote contractor’s reputation in the construction industry in Nigeria. To achieve this aim, 140 questionnaires were distributed to the Nigerian contractors. Based on the 67% response rate, descriptive analysis and analysis of variance (ANOVA) were the tools applied for the data obtained to be analysed. The result shows that, good communication system and improve quality of output of products are the most significant variables that can promote contractor’s reputation. The homogenous analyses indicate that there are significant different perceptions of respondents in term of the significant effects. The research concluded that contractor’s reputation in construction industry must be maintained and further research was suggested to focus on the qualitative method to have in-depth knowledge on contractor’s reputation in the construction industry.Keywords: construction industry, contractor’s reputation, effects of delay, Nigeria
Procedia PDF Downloads 4362590 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal
Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah
Abstract:
Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.Keywords: technicians, knowledge, Nepal, radiation
Procedia PDF Downloads 3342589 Moderating and Mediating Effects of Business Model Innovation Barriers during Crises: A Structural Equation Model Tested on German Chemical Start-Ups
Authors: Sarah Mueller-Saegebrecht, André Brendler
Abstract:
Business model innovation (BMI) as an intentional change of an existing business model (BM) or the design of a new BM is essential to a firm's development in dynamic markets. The relevance of BMI is also evident in the ongoing COVID-19 pandemic, in which start-ups, in particular, are affected by limited access to resources. However, first studies also show that they react faster to the pandemic than established firms. A strategy to successfully handle such threatening dynamic changes represents BMI. Entrepreneurship literature shows how and when firms should utilize BMI in times of crisis and which barriers one can expect during the BMI process. Nevertheless, research merging BMI barriers and crises is still underexplored. Specifically, further knowledge about antecedents and the effect of moderators on the BMI process is necessary for advancing BMI research. The addressed research gap of this study is two-folded: First, foundations to the subject on how different crises impact BM change intention exist, yet their analysis lacks the inclusion of barriers. Especially, entrepreneurship literature lacks knowledge about the individual perception of BMI barriers, which is essential to predict managerial reactions. Moreover, internal BMI barriers have been the focal point of current research, while external BMI barriers remain virtually understudied. Second, to date, BMI research is based on qualitative methodologies. Thus, a lack of quantitative work can specify and confirm these qualitative findings. By focusing on the crisis context, this study contributes to BMI literature by offering a first quantitative attempt to embed BMI barriers into a structural equation model. It measures managers' perception of BMI development and implementation barriers in the BMI process, asking the following research question: How does a manager's perception of BMI barriers influence BMI development and implementation in times of crisis? Two distinct research streams in economic literature explain how individuals react when perceiving a threat. "Prospect Theory" claims that managers demonstrate risk-seeking tendencies when facing a potential loss, and opposing "Threat-Rigidity Theory" suggests that managers demonstrate risk-averse behavior when facing a potential loss. This study quantitively tests which theory can best predict managers' BM reaction to a perceived crisis. Out of three in-depth interviews in the German chemical industry, 60 past BMIs were identified. The participating start-up managers gave insights into their start-up's strategic and operational functioning. After, each interviewee described crises that had already affected their BM. The participants explained how they conducted BMI to overcome these crises, which development and implementation barriers they faced, and how severe they perceived them, assessed on a 5-point Likert scale. In contrast to current research, results reveal that a higher perceived threat level of a crisis harms BM experimentation. Managers seem to conduct less BMI in times of crisis, whereby BMI development barriers dampen this relation. The structural equation model unveils a mediating role of BMI implementation barriers on the link between the intention to change a BM and the concrete BMI implementation. In conclusion, this study confirms the threat-rigidity theory.Keywords: barrier perception, business model innovation, business model innovation barriers, crises, prospect theory, start-ups, structural equation model, threat-rigidity theory
Procedia PDF Downloads 952588 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1292587 On the Effectiveness of Educational Technology on the Promotion of Exceptional Children or Children with Special Needs
Authors: Nasrin Badrkhani
Abstract:
The increasing use of educational technologies has created a tremendous transformation in all fields and most importantly, in the field of education and learning. In recent decades, traditional learning approaches have undergone fundamental changes with the emergence of new learning technologies. Research shows that suitable educational tools play an effective role in the transmission, comprehension, and impact of educational concepts. These tools provide a tangible basis for thinking and constructing concepts, resulting in an increased interest in learning. They provide real and true experiences to students and convey educational meanings and concepts more quickly and clearly. It can be said that educational technology, as an active and modern teaching method, with capabilities such as engaging multiple senses in the educational process and involving the learner, makes the learning environment more flexible. It effectively impacts the skills of children with special needs by addressing their specific needs. Teachers are no longer the sole source of information, and students are not mere recipients of information. They are considered the main actors in the field of education and learning. Since education is one of the basic rights of every human being and children with special needs face unique challenges and obstacles in education, these challenges can negatively affect their abilities and learning. To combat these challenges, one of the ways is to use educational technologies for more diverse, effective learning. Also, the use of educational technology for students with special needs has increasingly proven effective in boosting their self-confidence and helping them overcome learning challenges, enhancing their learning outcomes.Keywords: communication technology, students with special needs, self-confidence, raising the expectations and progress
Procedia PDF Downloads 152586 Force Sensor for Robotic Graspers in Minimally Invasive Surgery
Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy
Abstract:
Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor
Procedia PDF Downloads 2312585 Overview of the Various Factors Affecting the Properties of Microwave and Millimeterwave Dielectric Ceramics
Authors: Abdul Manan
Abstract:
Dielectric Resonators (DRs) have revolutionized the microwave wireless communication industry globally. There are three directions for research in ceramics for application in telecommunication industry Three key properties of ceramic dielectrics that determine their functionality at microwave and millimetrewave frequencies include relative permittivity (εr), unloaded quality factor Qu- the inverse of the dielectric loss (tanδ) and temperature coefficient of resonant frequency (τf). Each direction requires specific properties. These dielectric properties are affected by a number of factors. These includes tolerance factor, onset of structural phase transitions, dark core formation, processing conditions, raw materials and impurities, order/disorder behavior, compositional ordering, porosity, humidity, grain size, orientation of the crystallites, and grain boundaries. The data related to these factors is scattered. The main purpose of this review is to bring these together and present the effects of these factors on the microwave dielectric properties. Control of these factors is important for improvement in the microwave properties. This review would be very helpful to the novice researchers and technologists in the field.Keywords: order disorder, sintering, defect, porosity, grain boundaries
Procedia PDF Downloads 3992584 The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia
Authors: Muhammad Nurrizka Ramadhan
Abstract:
Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite.Keywords: bamboo, composite, furniture, wood
Procedia PDF Downloads 3772583 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads
Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar
Abstract:
This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.Keywords: Kevlar, needle temperautre, nomex, sewing
Procedia PDF Downloads 5332582 Analyzing the Impact of Migration on HIV and AIDS Incidence Cases in Malaysia
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
The human immunodeficiency virus (HIV) that causes acquired immune deficiency syndrome (AIDS) remains a global cause of morbidity and mortality. It has caused panic since its emergence. Relationships between migration and HIV/AIDS have become complex. In the absence of prospectively designed studies, dynamic mathematical models that take into account the migration movement which will give very useful information. We have explored the utility of mathematical models in understanding transmission dynamics of HIV and AIDS and in assessing the magnitude of how migration has impact on the disease. The model was calibrated to HIV and AIDS incidence data from Malaysia Ministry of Health from the period of 1986 to 2011 using Bayesian analysis with combination of Markov chain Monte Carlo method (MCMC) approach to estimate the model parameters. From the estimated parameters, the estimated basic reproduction number was 22.5812. The rate at which the susceptible individual moved to HIV compartment has the highest sensitivity value which is more significant as compared to the remaining parameters. Thus, the disease becomes unstable. This is a big concern and not good indicator from the public health point of view since the aim is to stabilize the epidemic at the disease-free equilibrium. However, these results suggest that the government as a policy maker should make further efforts to curb illegal activities performed by migrants. It is shown that our models reflect considerably the dynamic behavior of the HIV/AIDS epidemic in Malaysia and eventually could be used strategically for other countries.Keywords: epidemic model, reproduction number, HIV, MCMC, parameter estimation
Procedia PDF Downloads 3672581 Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites
Authors: J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, M. D. Banea
Abstract:
In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment.Keywords: chemical treatment, hybrid composite, jute, thermal
Procedia PDF Downloads 3102580 The Influence of Conservation Measures, Limiting Soil Degradation, on the Quality of Surface Water Resources
Authors: V. Sobotková, B. Šarapatka, M. Dumbrovský, J. Uhrová, M. Bednář
Abstract:
The paper deals with the influence of implemented conservation measures on the quality of surface water resources. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity to improve the quality of the environment and sustainability of crop production by means of better soil and water conservation. The most important degradation factor in our study area in the Hubenov drinking water reservoir catchment basin was water erosion together with loss of organic matter. Hubenov Reservoir water resources were monitored for twenty years (1990–2010) to collect water quality data for nitrate nitrogen (N-NO3-), total P, and undissolved substances. Results obtained from measurements taken before and after land consolidation indicated a decrease in the linear trend of N-NO3- and total P concentrations, this was achieved through implementation of conservation measures limiting soil degradation in the Hubenov reservoir catchment area.Keywords: complex land consolidation, degradation, land use, soil and water conservation, surface water resources
Procedia PDF Downloads 3592579 Crystallization in the TeO2 - Ta2O5 - Bi2O3 System: From Glass to Anti-Glass to Transparent Ceramic
Authors: Hasnaa Benchorfi
Abstract:
The Tellurite glasses exhibit interesting properties, notably their low melting point (700-900°C), high refractive index (≈2), high transparency in the infrared region (up to 5−6 μm), interesting linear and non-linear optical properties and high rare earth ions solubility. These properties give tellurite glasses a great interest in various optical applications. Transparent ceramics present advantages compared to glasses, such as improved mechanical, thermal and optical properties. But, the elaboration process of these ceramics requires complex sintering conditions. The full crystallization of glass into transparent ceramics is an alternative to circumvent the technical challenges related to the ceramics obtained by conventional processing. In this work, a crystallization study of a specific glass composition in the system TeO2-Ta2O5-Bi2O3 shows structural transitions from the glass to the stabilization of an unreported anti-glass phase to a transparent ceramic upon heating. An anti-glass is a material with a cationic long-range order and a disordered anion sublattice. Thus, the X-ray diffraction patterns show sharp peaks, while the Raman bands are broad and similar to those of the parent glass. The structure and microstructure of the anti-glass and corresponding ceramic were characterized by Powder X-Ray Diffraction, Electron Back Scattered Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of the Er3+-doped samples are also discussed.Keywords: glass, congruent crystallization, anti-glass, glass-ceramic, optics
Procedia PDF Downloads 802578 Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding
Authors: Kulwinder Singh Mann, Manmohan Singh Heer, Asha Rani
Abstract:
The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source.Keywords: buildup factor, clay bricks, fire bricks, nuclear wastage management, radiation protective double layered slabs
Procedia PDF Downloads 4082577 A Study in the Formation of a Term: Sahaba
Authors: Abdul Rahman Chamseddine
Abstract:
The Companions of the Prophet Muhammad, the Sahaba, are regarded as the first link between him and later believers who did not know him or learn from him directly. This makes the Sahaba a link in the chain between God and the ummah (community). Apart from their role in spreading the Prophet’s teachings, they came to be regarded as role models, representing the Islamic ideal of life as prescribed by the Prophet himself. According to Hadith, the Prophet had promised some Sahaba unqualified admission to paradise. It is commonly agreed that the Sahaba have the following attributes in common: God is well pleased with them; they will surely go to paradise; they are perfectly trustworthy; and they are the authorities from whom Muslims can learn all matters related to their religion. No other generation of Muslims has received the attention received by the Companions of the Prophet. In spite of the importance of the Sahaba in Islam, we still know comparatively little about them. There are at least two reasons for this. First, there is the overall scarcity of information surviving from the early period. At the death of the Prophet, it is said, there were more than 100,000 Companions. As we shall see, this is a complex issue, involving the definition of the term Sahaba. However, only few Companions of the Prophet are known to us. Ibn Hajar al-‘Asqalani, who wrote in the fifteenth century A.D., was only able to collect facts about 11,000 of them (including those whose status as Sahaba was disputed). Ibn Sa‘d, Ibn ‘Abd al-Barr and Ibn al-Athir, all of whom lived earlier than Ibn Hajar, included in their respective works fewer lives of Sahaba than he did. If we consider Ibn Hajar’s Isaba as the most complete biographical account of the Sahaba that remains available, we have information, presumably, on approximately one tenth of them. The remaining nine tenths are apparently lost from the historical record. Second, discussion of the Sahaba tends to focus on those considered the most important among them such as ‘Uthman, ‘Ali and Mu‘awiya, while others, who together number in the thousands, are less well-known. This paper will try to study the origins of the term Sahaba that became exclusive to the Companions of the Prophet and not a synonym of the word companions in general.Keywords: companions, Hadith, Islamic history, Muhammad, Sahaba, transmission
Procedia PDF Downloads 4172576 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 722575 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems
Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo
Abstract:
Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation
Procedia PDF Downloads 942574 Optimal Allocation of PHEV Parking Lots to Minimize Dstribution System Losses
Authors: Mohsen Mazidi, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, Mohamamd Rastegar
Abstract:
To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.Keywords: loss, plug-in hybrid electric vehicle (PHEV), PHEV parking lot, V2G
Procedia PDF Downloads 5432573 Injection Practices among Private Medical Practitioners of Karachi Pakistan
Authors: Mohammad Tahir Yousafzai, Nighat Nisar, Rehana Khalil
Abstract:
The aim of this study is to assess the practices of sharp injuries and factors leading to it among medical practitioners in slum areas of Karachi, Pakistan. A cross sectional study was conducted in slum areas of Landhi Town Karachi. All medical practitioners (317) running the private clinics in the areas were asked to participate in the study. Data was collected on self administered pre-tested structured questionnaires. The frequency with percentage and 95% confidence interval was calculated for at least one sharp injury (SI) in the last one year. The factors leading to sharp injuries were assessed using multiple logistic regressions. About 80% of private medical practitioners consented to participate. Among these 87% were males and 13% were female. The mean age was 38±11 years and mean work experience was 12±9 years. The frequency of at least one sharp injury in the last one year was 27%(95% CI: 22.2-32). Almost 47% of Sharp Injuries were caused by needle recapping, less work experience, less than 14 years of schooling, more than 20 patients per day, administering more than 30 injections per day, reuse of syringes and needle recapping after use were significantly associated with sharp injuries. Injection practices were found inadequate among private medical practitioners in slum areas of Karachi, and the frequency of Sharp Injuries was found high in these areas. There is a risk of occupational transmission of blood borne infections among medical practitioners warranting an urgent need for launching awareness and training on standard precautions for private medical practitioners in the slum areas of Karachi.Keywords: injection practices, private practitioners, sharp injuries, blood borne infections
Procedia PDF Downloads 4232572 Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin
Authors: Brajesh Tiwari, Yuvraj Dangi, Abhishek Jain, Ashok Jain
Abstract:
The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents.Keywords: sphingosomes, anti-cancer, doxorubicin, formulation
Procedia PDF Downloads 3042571 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications
Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.
Abstract:
In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna
Procedia PDF Downloads 1132570 Accurate Energy Assessment Technique for Mine-Water District Heat Network
Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones
Abstract:
UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.Keywords: heat demand, heat pump, renewable energy, retrofit
Procedia PDF Downloads 952569 Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen WIese
Abstract:
The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes.Keywords: water treatment, membranes, ceramic membranes, hybrid membranes, layer-by-layer modification
Procedia PDF Downloads 1822568 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks
Authors: Ather Saeed, Arif Khan, Jeffrey Gosper
Abstract:
Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering
Procedia PDF Downloads 772567 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System
Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi
Abstract:
Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.Keywords: channel estimation, OFDM, pilot-assist, VLC
Procedia PDF Downloads 1822566 Studies on Lucrative Process Layout for Medium Scale Industries
Authors: Balamurugan Baladhandapani, Ganesh Renganathan, V. R. Sanal Kumar
Abstract:
In this paper a comprehensive review on various factory layouts has been carried out for designing a lucrative process layout for medium scale industries. Industry data base reveals that the end product rejection rate is on the order of 10% amounting large profit loss. In order to avoid these rejection rates and to increase the quality product production an intermediate non-destructive testing facility (INDTF) has been recommended for increasing the overall profit. We observed through detailed case studies that while introducing INDTF to medium scale industries the expensive production process can be avoided to the defective products well before its final shape. Additionally, the defective products identified during the intermediate stage can be effectively utilized for other applications or recycling; thereby the overall wastage of the raw materials can be reduced and profit can be increased. We concluded that the prudent design of a factory layout through critical path method facilitating with INDTF will warrant profitable outcome.Keywords: intermediate non-destructive testing, medium scale industries, process layout design
Procedia PDF Downloads 5052565 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 942564 Theoretical Study of Flexible Edge Seals for Vacuum Glazing
Authors: Farid Arya, Trevor Hyde
Abstract:
The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.Keywords: flexible edge seal, stress, support pillar, vacuum glazing
Procedia PDF Downloads 2342563 Internal and External Overpressure Calculation for Vented Gas Explosion by Using a Combined Computational Fluid Dynamics Approach
Abstract:
Recent oil and gas accidents have reminded us the severe consequences of gas explosion on structure damage and financial loss. In order to protect the structures and personnel, engineers and researchers have been working on numerous different explosion mitigation methods. Amongst, venting is the most economical approach to mitigate gas explosion overpressure. In this paper, venting is used as the overpressure alleviation method. A theoretical method and a numerical technique are presented to predict the internal and external pressure from vented gas explosion in a large enclosure. Under idealized conditions, a number of experiments are used to calibrate the accuracy of the theoretically calculated data. A good agreement between the theoretical results and experimental data is seen. However, for realistic scenarios, the theoretical method over-estimates internal pressures and is incapable of predicting external pressures. Therefore, a CFD simulation procedure is proposed in this study to estimate both the internal and external overpressure from a large-scale vented explosion. Satisfactory agreement between CFD simulation results and experimental data is achieved.Keywords: vented gas explosion, internal pressure, external pressure, CFD simulation, FLACS, ANSYS Fluent
Procedia PDF Downloads 161