Search results for: thermal sensing
1915 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels
Authors: S. Ansari Sadrabadi, G. H. Rahimi
Abstract:
In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.Keywords: FGM, cylindrical pressure tubes, small deformation theory, yield onset, thermal loading
Procedia PDF Downloads 4191914 Characterization of Enhanced Thermostable Polyhydroxyalkanoates
Authors: Ahmad Idi
Abstract:
The biosynthesis and properties of polyhydroxyalkanoate (PHA) are determined by the bacterial strain and the culture condition. Hence this study elucidates the structure and properties of PHA produced by a newly isolated strain of photosynthetic bacterium, Rhodobacter sphaeroides ADZ101 grown under the optimized culture condition. The properties of the accumulated PHA were determined via FTIR, NMR, TGA, and GCMS analyses. The results showed that acetate and ammonia chloride had the highest PHA accumulation with a ratio of 32.5 mM at neutral pH. The structural analyses showed that the polymer comprises both short and medium-chain length monomers ranging from C5, C13, C14, and C18, as well as the presence of novel PHA monomers. The thermal analysis revealed that the maximum temperature of decomposition occurred at 395°C and 454°C, indicating two major decomposition reactions. Thus this bacterial strain, optimized culture condition, and the abundance of novel monomers enhanced the thermostability of the accumulated PHA.Keywords: bioplastic polyhydroxyalkanoates Rhodobacter sphaeroides ADZ101 thermostable PHA
Procedia PDF Downloads 1451913 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 541912 Development of Plantar Insoles Reinforcement Using Biocomposites
Authors: A. C. Vidal, D. R. Mulinari, C. F. Bandeira, S. R. Montoro
Abstract:
Due to the great effort suffered by foot during movement, is of great importance to count on a shoe that has a proper structure and excellent support tread to prevent the immediate and long-term consequences in all parts of the body. In this sense, new reinforcements of insoles with high impact absorption were developed in this work, from a polyurethane (PU) biocomposite derived from castor oil reinforced or not with palm fibers. These insoles have been obtained from the mixture with polyol prepolymer (diisocyanate) and subsequently were evaluated morphologically, mechanically and by thermal analysis. The results revealed that the biocomposites showed lower flexural strength, higher impact strength and open interconnected pores in their microstructure, but with smaller cells and degradation temperature slightly higher compared to the marketed material, showing interesting properties for a possible application as reinforcement of insoles.Keywords: composite, polyurethane insole, palm fibers, plantar insoles reinforcement
Procedia PDF Downloads 4171911 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing
Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss
Abstract:
Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.Keywords: IRE-mRNA, IRP1, binding, ionic strength
Procedia PDF Downloads 1281910 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint
Authors: Richard Colwell, Thomas Englert
Abstract:
In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface
Procedia PDF Downloads 2181909 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells
Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar
Abstract:
In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT/PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive.Keywords: n-dodecylthiol, congugated PSC, P3HT/PCBM, polymer solar cells
Procedia PDF Downloads 2831908 Assessment of Training, Job Attitudes and Motivation: A Mediation Model in Banking Sector of Pakistan
Authors: Abdul Rauf, Xiaoxing Liu, Rizwan Qaisar Danish, Waqas Amin
Abstract:
The core intention of this study is to analyze the linkage of training, job attitudes and motivation through a mediation model in the banking sector of Pakistan. Moreover, this study is executed to answer a range of queries regarding the consideration of employees about training, job satisfaction, motivation and organizational commitment. Hence, the association of training with job satisfaction, job satisfaction with motivation, organizational commitment with job satisfaction, organization commitment as independently with motivation and training directly related to motivation is determined in this course of study. A questionnaire crafted for comprehending the purpose of this study by including four variables such as training, job satisfaction, motivation and organizational commitment which have to measure. A sample of 450 employees from seventeen private (17) banks and two (2) public banks was taken on the basis of convenience sampling from Pakistan. However, 357 questionnaires, completely filled were received back. AMOS used for assessing the conformity factor analysis (CFA) model and statistical techniques practiced to scan the collected data (i.e.) descriptive statistics, regression analysis and correlation analysis. The empirical findings revealed that training and organizational commitment has a significant and positive impact directly on job satisfaction and motivation as well as through the mediator (job satisfaction) also the impact sensing in the same way on the motivation of employees in the financial Banks of Pakistan. In this research study, the banking sector is under discussion, so the findings could not generalize on other sectors such as manufacturing, textiles, telecom, and medicine, etc. The low sample size is also the limitation of this study. On the foundation of these results the management fascinates to make the revised strategies regarding training program for the employees as it enhances their motivation level, and job satisfaction on a regular basis.Keywords: job satisfaction, motivation, organizational commitment, Pakistan, training
Procedia PDF Downloads 2541907 Investigation of the Cooling and Uniformity Effectiveness in a Sinter Packed Bed
Authors: Uzu-Kuei Hsu, Chang-Hsien Tai, Kai-Wun Jin
Abstract:
When sinters are filled into the cooler from the sintering machine, and the non-uniform distribution of the sinters leads to uneven cooling. This causes the temperature difference of the sinters leaving the cooler to be so large that it results in the conveyors being deformed by the heat. The present work applies CFD method to investigate the thermo flowfield phenomena in a sinter cooler by the Porous Media Model. Using the obtained experimental data to simulate porosity (Ε), permeability (κ), inertial coefficient (F), specific heat (Cp) and effective thermal conductivity (keff) of the sinter packed beds. The physical model is a similar geometry whose Darcy numbers (Da) are similar to the sinter cooler. Using the Cooling Index (CI) and Uniformity Index (UI) to analyze the thermo flowfield in the sinter packed bed obtains the cooling performance of the sinter cooler.Keywords: porous media, sinter, cooling index (CI), uniformity index (UI), CFD
Procedia PDF Downloads 4021906 Multicriteria for Optimal Land Use after Mining
Authors: Carla Idely Palencia-Aguilar
Abstract:
Mining in Colombia represents around 2% of the GDP (USD 8 billion in 2018), with main productions represented by coal, nickel, gold, silver, emeralds, iron, limestone, gypsum, among others. Sand and Gravel had been decreasing its participation of the GDP with a reduction of 33.2 million m3 in 2015, to 27.4 in 2016, 22.7 in 2017 and 15.8 in 2018, with a consumption of approximately 3 tons/inhabitant. However, with the new government policies it is expected to increase in the following years. Mining causes temporary environmental impacts, once restoration and rehabilitation takes place, social, environmental and economic benefits are higher than the initial state. A way to demonstrate how the mining interventions had contributed to improve the characteristics of the region after sand and gravel mining, the NDVI (Normalized Difference Vegetation Index) from MODIS and ASTER were employed. The histograms show not only increments of vegetation in the area (8 times higher), but also topographies similar to the ones before the intervention, according to the application for sustainable development selected: either agriculture, forestry, cattle raising, artificial wetlands or do nothing. The decision was based upon a Multicriteria analysis for optimal land use, with three main variables: geostatistics, evapotranspiration and groundwater characteristics. The use of remote sensing, meteorological stations, piezometers, sunphotometers, geoelectric analysis among others; provide the information required for the multicriteria decision. For cattle raising and agricultural applications (where various crops were implemented), conservation of products were tested by means of nanotechnology. The results showed a duration of 2 years with no chemicals added for preservation and concentration of vitamins of the tested products.Keywords: ASTER, Geostatistics, MODIS, Multicriteria
Procedia PDF Downloads 1261905 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils
Authors: Sara Soltanpour, Adolfo Foriero
Abstract:
Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil
Procedia PDF Downloads 1251904 The Functionality of Ovarian Follicle on Steroid Hormone Secretion under Heat Stress
Authors: Petnamnueng Dettipponpong, Shuen E. Chen
Abstract:
Heat stress is known to have negative effects on reproductive functions, such as follicular development and ovulation. This study aimed to investigate the specific effects of heat stress on steroid hormone secretion of ovarian follicle cells, particularly in relation to the expression of Apolipoprotein B (ApoB) and microsomal triglyceride transfer protein (MTP). The aim of the study was to understand the impact of heat stress on steroid hormone secretion in ovarian follicle cells and to explore the role of ApoB and MTP in this process. Primary granulosa and theca cells were collected from follicles and cultured under heat stress conditions (42 °C) for various time periods. Controls were maintained under normal conditions (37.5 °C ). The culture medium was collected at different time points to measure levels of progesterone and estradiol using ELISA kits. ApoB and MTP expression levels were analyzed using homemade antibodies and western blot. Data were assessed by a one-way ANOVA comparison test with Duncan’s new multiple-range test. Results were expressed as mean±S.E. Difference was considered significant at P<0.05. The results showed that heat stress significantly increased progesterone secretion in granulosa cells, with the peak observed after 13 hours of recovery under thermoneutral conditions. Estradiol secretion by theca cells was not affected. Heat stress also had a significant negative effect on granulosa cell viability. Additionally, the expression of ApoB and MTP was found to be differentially regulated by heat stress. ApoB expression in theca cells was transiently promoted, while ApoB expression in granulosa cells was consistently suppressed. MTP expression increased after 5 hours of recovery in both cell types. These findings suggest a mechanism by which chicken follicle cells export cellular lipids as very low-density lipoprotein (VLDL) in response to thermal stress. These contribute to our understanding of the role of ApoB and MTP steroidogenesis and lipid metabolism under heat stress conditions. The study involved the collection of primary granulosa and theca cells, culture under different temperature conditions, and analysis of the culture medium for hormone levels using ELISA kits. ApoB and MTP expression levels were assessed using homemade antibodies and western blot. This study aimed to address the effects of heat stress on steroid hormone secretion in ovarian follicle cells, as well as the role of ApoB and MTP in this process. The study demonstrates that heat stress stimulates steroidogenesis in granulosa cells, affecting progesterone secretion. ApoB and MTP expression were found to be differentially regulated by heat stress, indicating a potential mechanism for the export of cellular lipids in response to thermal stress.Keywords: heat stress, granulosa cells, theca cells, steroidogenesis, chicken, apolipoprotein B, microsomal triglyceride transfer protein
Procedia PDF Downloads 751903 Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage
Authors: Dong Won Kim, Hye Ji Kim, Hyun Young Jung
Abstract:
Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures.Keywords: ionic liquid, silica nanoparticle, energy storage, electrochemical properties
Procedia PDF Downloads 2181902 Effects of Roughness Elements on Heat Transfer During Natural Convection
Abstract:
The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines.Keywords: natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann method
Procedia PDF Downloads 5401901 Cold Metal Transfer Welding of Dissimilar Thickness 6061-T6 to 5182-O Aluminum Alloys
Authors: A. Elrefaei
Abstract:
The possibility of having sheets with different thicknesses and materials in one assembly facilitates the optimal material distribution within the final product and reduces the weight of the structure. Ability of joining process to assembly these different material combinations is always a challenge to the designer. In this study, 0.6 mm thick 6061-T6 and 2 mm thick 5182-O were robot CMT welded using ER5356 and ER4043 filler metals. The thermal effect of welding resulted in a loss of hardness in the 6061 HAZ. Joints welded by ER5356 filler metal were much higher in fracture load than joints welded by ER4043 and the elongation of joints welded by ER5356 was almost double its corresponding joints welded by ER4043 filler. Owing to the big difference in formability and thickness of base metals, the fracture in forming test occurred in the softened 6061 HAZ out from the weld centerline.Keywords: aluminum, CMT, mechanical, welding
Procedia PDF Downloads 2321900 Preliminary Study of Desiccant Cooling System under Algerian Climates
Abstract:
The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.Keywords: dehumidification, efficiency, humidity, Trnsys
Procedia PDF Downloads 4401899 Screening of Metal Chloride Anion-based Ionic Liquids for Direct Conversion of Hydrogen Sulfide by COSMO-RS
Authors: Muhammad Syahir Aminuddin, Zakaria Man, Mohamad Azmi Bustam Khalil
Abstract:
In order to identify the best possible reaction media for performing H₂S conversion, a total number of 300 different ILs from a combination of 20 cations and 15 anions were screened via COSMO-RS model simulations. By COSMO-RS method, thermodynamic and physicochemical properties of 300 ILs, such as Henry's law constants, activity coefficient, selectivity, capacity, and performance index, are obtained and analyzed. Thus, by comparing the performance of ILs via COSMO-RS, a series of TSILs containing cation of [P66614] with metal chloride anions such as Fe, Ga, and Al were chosen and selected for synthesis based on their performance predicted by COSMO-RS and their economic values. Consequently, the physiochemical properties such as density, viscosity, thermal properties, as well as H₂S absorptive oxidation performances in those TSILs will be systematically investigated.Keywords: conversion of hydrogen sulfide, hydrogen sulfide, H₂S, sour natural gas, task specific ionic liquids
Procedia PDF Downloads 1531898 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique
Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti
Abstract:
Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.Keywords: cordierite, infiltration technique, porous ceramics, sol-gel
Procedia PDF Downloads 2711897 Transient Hygrothermoelastic Behavior in an Infinite Annular Cylinder with Internal Heat Generation by Linear Dependence Theory of Coupled Heat and Moisture
Authors: Tasneem Firdous Islam, G. D. Kedar
Abstract:
The aim of this paper is to study the effect of internal heat generation in a transient infinitely long annular cylinder subjected to hygrothermal loadings. The linear dependence theory of moisture and temperature is derived based on Dufour and Soret effect. The meticulous solutions of temperature, moisture, and thermal stresses are procured by using the Hankel transform technique. The influence of the internal heat source on the radial aspect is examined for coupled and uncoupled cases. In the present study, the composite material T300/5208 is considered, and the coupled and uncoupled cases are analyzed. The results obtained are computed numerically and illustrated graphically.Keywords: temperature, moisture, hygrothermoelasticity, internal heat generation, annular cylinder
Procedia PDF Downloads 1151896 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation
Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras
Abstract:
The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure
Procedia PDF Downloads 2311895 Impact of Egypt’s Energy Demand on Oil and Gas Power Systems Environment
Authors: Moustafa Osman Mohamed
Abstract:
This paper will explore the influence of energy sector in Arab Republic of Egypt which has shared its responsibilities of many environmental challenges as the second largest economy in the Middle East (after Iran). Air and water pollution, desertification, inadequate disposal of solid waste and damage to coral reefs are serious problems that influence environmental management in Egypt. The intensive reliance of high population density and strong industrial growth are wearing Egypt's resources, and the rapidly-growing population has forced Egypt to breakdown agricultural land to residential and relevant use of commercial ingestion. The depletion effects of natural resources impose the government to apply innovation techniques in emission control and focus on sustainability. The cogeneration will be presented to control thermal losses and increase efficiency of energy power system.Keywords: cogeneration, environmental management, power electricity, energy indicators
Procedia PDF Downloads 2741894 Impact of Sunflower Oil Supplemented Diet on Performance and Hematological Stress Indicators of Growing-Finishing Pigs Exposed to Hot Environment
Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara Duarte Borges, Antoni D. Bueno, Leandro Batista Costa
Abstract:
As homeothermic animals, pigs manifest maximum performance when kept at comfortable temperature levels, represented by a limit where thermoregulatory processes are minimal (18 - 20°C). In a stress situation where it will have a higher energy demand for thermal maintenance, the energy contribution to the productive functions will be reduced, generating health imbalances, drop in productive rates and welfare problems. The hypothesis of this project is that 5% starch replacement per 5% sunflower oil (SO), in growing and finishing pig’s diet (Iberic x Duroc), is effective as a nutritional strategy to reduce the negative impacts of thermal stress on performance and animal welfare. Seventy-two crossbred males (51± 6,29 kg body weight- BW) were housed according to the initial BW, in climate-controlled rooms, in collective pens, and exposed to heat stress conditions (30 - 32°C; 35% to 50% humidity). The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). The treatments studied were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed was provided in two phases, 50–100 Kg BW for growing and 100-140 Kg BW for finishing period, respectively. Hematological, biochemical and growth performance parameters were evaluated on all animals at the beginning of the environmental treatment, on the transition of feed (growing to finishing) and in the final of experiment. After the experimental period, when animals reached a live weight of 130-140 kg, they were slaughtered by carbon dioxide (CO2) stunning. Data have shown for the growing phase no statistical interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on animal performance. At finishing phase, pigs fed with SO diet with restriction feed intake had the same average daily gain (ADG) compared with pigs in control diet with ad libitum feed intake. Furthermore, animals fed with the same diet (SO), presented a better feed gain (p < 0,05) due to feed intake reduce (p < 0,05) when compared with control group. To hematological and biochemical parameters, animals under heat stress had an increase in hematocrit, corpuscular volume, urea concentration, creatinine, calcium, alanine aminotransferase and aspartate aminotransferase (p < 0,05) when compared with the beginning of experiment. These parameters were efficient to characterize the heat stress, although the experimental treatments were not able to reduce the hematological and biochemical stress indicators. In addition, the inclusion of SO on pig diets improve feed gain in pigs at finishing phase, even with restriction feed intake.Keywords: hematological, performance, pigs, welfare
Procedia PDF Downloads 2811893 An Innovative Approach to Solve Thermal Comfort Problem Related to the 100m2 Houses in Erbil
Authors: Haval Sami Ali, Hassan Majeed Hassoon Aldelfi
Abstract:
Due to the rapid growth of Erbil population and the resulting shortage of residential buildings, individuals actively utilized 5x20 m plots for two bedroom residential houses. Consequently, poor and unhealthy ventilation comes about. In this paper, the authors developed an old Barajeel (Wind Catchers) approach for natural ventilation. Two Barajeels (Wind Catchers) are designed and located at both extreme ends of the built unit. The two wind catchers are made as inlet and outlet for the air movement where the rate of air changes at its best. To validate the usage of the wind catchers a CFD Software was used to simulate the operation of the wind catchers for natural ventilations for average wind speed of 2 m/s. The results show a positive solution to solve the problem of the cramped such built units. It can be concluded that such solutions can be deployed by the local Kurdistan authorities.Keywords: wind catcher, ventilation, natural, air changes, Barajeel, Erbil
Procedia PDF Downloads 2881892 Optimization of Temperature Difference Formula at Thermoacoustic Cryocooler Stack with Genetic Algorithm
Authors: H. Afsari, H. Shokouhmand
Abstract:
When stack is placed in a thermoacoustic resonator in a cryocooler, one extremity of the stack heats up while the other cools down due to the thermoacoustic effect. In the present, with expression a formula by linear theory, will see this temperature difference depends on what factors. The computed temperature difference is compared to the one predicted by the formula. These discrepancies can not be attributed to non-linear effects, rather they exist because of thermal effects. Two correction factors are introduced for close up results among linear theory and computed and use these correction factors to modified linear theory. In fact, this formula, is optimized by GA (Genetic Algorithm). Finally, results are shown at different Mach numbers and stack location in resonator.Keywords: heat transfer, thermoacoustic cryocooler, stack, resonator, mach number, genetic algorithm
Procedia PDF Downloads 3781891 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 2921890 Propellant Less Propulsion System Using Microwave Thrusters
Authors: D. Pradeep Mitra, Prafulla
Abstract:
Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system.Keywords: propellant less, microwaves, parabolic wave guide, propulsion system
Procedia PDF Downloads 3811889 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 3411888 High Thermal Selective Detection of NOₓ Using High Electron Mobility Transistor Based on Gallium Nitride
Authors: Hassane Ouazzani Chahdi, Omar Helli, Bourzgui Nour Eddine, Hassan Maher, Ali Soltani
Abstract:
The real-time knowledge of the NO, NO₂ concentration at high temperature, would allow manufacturers of automobiles to meet the upcoming stringent EURO7 anti-pollution measures for diesel engines. Knowledge of the concentration of each of these species will also enable engines to run leaner (i.e., more fuel efficient) while still meeting the anti-pollution requirements. Our proposed technology is promising in the field of automotive sensors. It consists of nanostructured semiconductors based on gallium nitride and zirconia dioxide. The development of new technologies for selective detection of NO and NO₂ gas species would be a critical enabler of superior depollution. The current response was well correlated to the NO concentration in the range of 0–2000 ppm, 0-2500 ppm NO₂, and 0-300 ppm NH₃ at a temperature of 600.Keywords: NOₓ sensors, HEMT transistor, anti-pollution, gallium nitride, gas sensor
Procedia PDF Downloads 2451887 MWCNT/CuFe10Al2O19/Polyanilie Nanocomposite for Microwave Absorbing Applications
Authors: Pallab Bhattacharya, C. K. Das
Abstract:
Development of microwave absorbing material is a growing field of research in both the commercial and defense sector, and also to enrich the field of stealth technology. The recent work is attentive to the preparation of nanocomposite based on acid modified MWCNT, hexagonal shaped magnetic M-type hexaferrite (CuFe10Al2O19) and polyaniline. CuFe10Al2O19 was prepared by a facile chemical co-precipitation method. An in-situ approach was employed for the coating of polyaniline on MWCNT/CuFe10Al2O19 nanocomposite. The final fabrication of this nanocomposite for microwave measurements was done suitably in the matrix of thermoplastic polyurethane with 10% filler content. The nanocomposites showed the maximum reflection loss of -60.2 dB (in X-band) at the thickness of 2.5 mm with a broad absorption range in contrast to the pristine MWCNT and CuFe10Al2O19. Addition of PANI improves the microwave absorption property of the nanocomposites. The thermal stability of the prepared nanocomposites is also very high.Keywords: magnetic materials, microwave absorption, MWCNT, nanocomposites
Procedia PDF Downloads 2991886 Synthesis, Characterization and Catalytic Applications of Divalent Schiff Base Metal Complexes Derived from Amino Coumarins and Substituted Benzaldehydes and Acetophenones
Authors: Srinivas Nerella
Abstract:
A series of new heterodentate N, O-donor ligands derived from condensing 3-amino Coumarins with hydroxy benzaldehydes and acetophenones were used to afford new mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) coordination compounds. All the complexes were characterized by IR, 1H-NMR, 13C-NMR, Mass, ESR, Electronic spectra, Conductance, Magnetic and Thermal studies. The ligands show hexa coordination in Mn(II), Co(II), Ni(II), and Pd(II) complexes resulting octahedral geometries, while the ligands in Zn(II) and Cu(II) complexes show tetra coordination resulting tetrahedral and square planar geometries respectively. These mononuclear complexes were investigated as catalysts in the hydrothiolation of aromatic and aliphatic alkynes with thiols. These metal complexes were acted as versatile catalysts and gave good yields.Keywords: schiff bases, divalent metal complexes of schiff bases, Catalytic activity, hydrothiolation
Procedia PDF Downloads 415