Search results for: surface curvature index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10022

Search results for: surface curvature index

7322 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics

Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui

Abstract:

The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.

Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers

Procedia PDF Downloads 444
7321 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 359
7320 Assessment of the Groundwater Agricultural Pollution Risk: Case of the Semi-Arid Region (Batna-East Algeria)

Authors: Dib Imane, Chettah Wahid, Khedidja Abdelhamid

Abstract:

The plain of Gadaïne - Ain Yaghout, located in the wilaya of Batna (Eastern Algeria), experiences intensive human activities, particularly in agricultural practices which are accompanied by an increasing use of chemical fertilizers and manure. These activities lead to a degradation of the quality of water resources. In order to protect the quality of groundwater in this plain and formulate effective strategies to mitigate or avoid any contamination of groundwater, a risk assessment using the European method known as “COSTE Action 620” was applied to the mio-. plio-quaternary aquifer of this plain. Risk assessment requires the identification of existing dangers and their potential impact on groundwater by using a system of evaluation and weighting. In addition, it also requires the integration of the hydrogeological factors that influence the movement of contaminants by means of the intrinsic vulnerability maps of groundwater, which were produced according to the modified DRASTIC method. The overall danger on the plain ranges from very low to high. Farms containing stables, houses detached from the public sewer system, and sometimes manure piles were assigned a weighting factor expressing the highest degree of harmfulness; this created a medium to high danger index. Large areas for agricultural practice and grazing are characterized, successively, by low to very low danger. Therefore, the risks present at the study site are classified according to a range from medium to very high-risk intensity. These classes successively represent 3%, 49%, and 0.2% of the surface of the plain. Cultivated land and farms present a high to very high level of risk successively. In addition, with the exception of the salt mine, which presents a very high level of risk, the gas stations and cemeteries, as well as the railway line, represent a high level of risk.

Keywords: semi-arid, quality of water resources, risk assessment, vulnerability, contaminants

Procedia PDF Downloads 54
7319 A Research on the Coordinated Development of Chengdu-Chongqing Economic Circle under the Background of New Urbanization

Authors: Deng Tingting

Abstract:

The coordinated and integrated development of regions is an inevitable requirement for China to move towards high-quality, sustainable development. As one of the regions with the best economic foundation and the strongest economic strength in western China, it is a typical area with national importance and strong network connection characteristics in terms of the comprehensive effect of linking the inland hinterland and connecting the western and national urban networks. The integrated development of the Chengdu-Chongqing economic circle is of great strategic significance for the rapid and high-quality development of the western region. In the context of new urbanization, this paper takes 16 urban units within the economic circle as the research object, based on the 5-year panel data of population, regional economy, and spatial construction and development from 2016 to 2020, using the entropy method and Theil index to analyze the three target layers, and cause analysis. The research shows that there are temporal and spatial differences in the Chengdu-Chongqing economic circle, and there are significant differences between the core city and the surrounding cities. Therefore, by reforming and innovating the regional coordinated development mechanism, breaking administrative barriers, and strengthening the "polar nucleus" radiation function to release the driving force for economic development, especially in the gully areas of economic development belts, not only promote the coordinated development of internal regions but also promote the coordinated and sustainable development of the western region and take a high-quality development path.

Keywords: Chengdu-Chongqing economic circle, new urbanization, coordinated regional development, Theil Index

Procedia PDF Downloads 122
7318 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 238
7317 Insertion Loss Improvement of a Two-Port Saw Resonator Based on AlN via Alloying with Transition Metals

Authors: Kanouni Fares

Abstract:

This paper describes application of X-doped AlN (X=Sc, Cr and Y) to wideband surface acoustic wave (SAW) resonators in 200–300 MHz range. First, it is shown theoretically that Cr doped AlN thin film has the highest piezoelectric strain constant, accompanied by a lowest mechanical softening compared to Sc doped AlScN and Y doped AlN thin films for transition metals concentrations ranging from 0 to 25%. Next, the impact of transition metals (Sc, Cr and Y) concentration have been carried out for the first time, in terms of surface wave velocity, electrode reflectivity, transduction coefficient and distributed finger capacitance. Finely, the insertion loss of two-port SAW resonator based on AlXN (X=Sc, Cr and Y) deposited on sapphire substrate is obtained using P-matrix model, and it is shown that AlCrN-SAW resonator exhibit lower insertion loss compared to those based on AlScN and AlYN for metal concentrations of 25%.This finding may position Cr doped AlN as a prime piezoelectric material for low loss SAW resonators whose performance can be tuned via Cr composition.

Keywords: P-Matrix, SAW-delay line, interdigital transducer, nitride aluminum, metals transition

Procedia PDF Downloads 124
7316 Electrospun Membrane doped with Gold Nanorods for Surface-Enhanced Raman Sepctroscopy

Authors: Ziwei Wang, Andrea Lucotti, Luigi Brambilla, Matteo Tommasini, Chiara Bertarelli

Abstract:

Surface-enhanced Raman Spectroscopy (SERS) is a highly sensitive detection that provides abundant information on low concentration analytes from various researching areas. Based on localized surface plasmon resonance, metal nanostructures including gold, silver and copper have been investigated as SERS substrate during recent decades. There has been increasing more attention of exploring good performance, homogenous, repeatable SERS substrates. Here, we show that electrospinning, which is an inexpensive technique to fabricate large-scale, self-standing and repeatable membranes, can be effectively used for producing SERS substrates. Nanoparticles and nanorods are added to the feed electrospinning solution to collect functionalized polymer fibrous mats. We report stable electrospun membranes as SERS substrate using gold nanorods (AuNRs) and poly(vinyl alcohol). Particularly, a post-processing crosslinking step using glutaraldehyde under acetone environment was carried out to the electrospun membrane. It allows for using the membrane in any liquid environment, including water, which is of interest both for sensing of contaminant in wastewater, as well as for biosensing. This crosslinked AuNRs/PVA membrane has demonstrated excellent performance as SERS substrate for low concentration 10-6 M Rhodamine 6G (Rh6G) aqueous solution. This post-processing for fabricating SERS substrate is the first time reported and proved through Raman imaging of excellent stability and outstanding performance. Finally, SERS tests have been applied to several analytes, and the application of AuNRs/PVA membrane is broadened by removing the detected analyte by rinsing. Therefore, this crosslinked AuNRs/PVA membrane is re-usable.

Keywords: SERS spectroscopy, electrospinning, crosslinking, composite materials

Procedia PDF Downloads 147
7315 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils

Authors: Ákos Wolf, Richard P. Ray

Abstract:

Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils

Keywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity

Procedia PDF Downloads 248
7314 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 201
7313 Effects of Two Distinct Monsoon Seasons on the Water Quality of a Tropical Crater Lake

Authors: Maurice A. Duka, Leobel Von Q. Tamayo, Niño Carlo I. Casim

Abstract:

The paucity of long-term measurements and monitoring of accurate water quality parameter profiles is evident for small and deep tropical lakes in Southeast Asia. This leads to a poor understanding of the stratification and mixing dynamics of these lakes in the region. The water quality dynamics of Sampaloc Lake, a tropical crater lake (104 ha, 27 m deep) in the Philippines, were investigated to understand how monsoon-driven conditions impact water quality and ecological health. Located in an urban area with approximately 10% of its surface area allocated to aquaculture, the lake is subject to distinct seasonal changes associated with the Northeast (NE) and Southwest (SW) monsoons. NE Monsoon typically occurs from October to April, while SW monsoon from May to September. These monsoons influence the lake’s water temperature, dissolved oxygen (DO), chlorophyll-α (chl-α), phycocyanin (PC), and turbidity, leading to significant seasonal variability. Monthly field observations of water quality parameters were made from October 2022 to September 2023 using a multi-parameter probe, YSI ProDSS, together with the collection of meteorological data during the same period. During the NE monsoon, cooler air temperatures and winds with sustained speeds caused surface water temperatures to drop from 30.9 ºC in October to 25.5 ºC in January, resulting in the weakening of stratification and eventually in lake turnover. This turnover redistributed nutrients from hypolimnetic layers to surface layers, increasing chl-α and PC levels (14-41 and 0-2 µg/L) throughout the water column. The fish kill was also observed during the lake’s turnover event as a result of the mixing of hypoxic hypolimnetic waters. Turbidity levels (0-3 NTU) were generally low but showed mid-column peaks in October, which was linked to thermocline-related effects, while low values in November followed heavy rainfall dilution and mixing effects. Conversely, the SW monsoon showed increased surface temperatures (28-30 ºC), shallow thermocline formations (3-11 m), and lower surface chl-α and PC levels (2-8 and 0-0.5 µg/L, respectively), likely due to limited nutrient mixing and more stable stratification. Turbidity was notably higher also in July (11-15 NTU) due to intense rainfall and reduced light penetration, which minimized photosynthetic activity. The SW monsoon also coincided with the typhoon season in the study area, resulting in partial upwelling of nutrients during strong storm events. These findings emphasize the need for continued monitoring of Sampaloc Lake’s seasonal water quality patterns, as monsoon-driven changes are crucial to maintaining its ecological balance and sustainability.

Keywords: seasonal water quality dynamics, Philippine tropical lake, monsoon-driven conditions, stratification and mixing

Procedia PDF Downloads 17
7312 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences

Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan

Abstract:

Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.

Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies

Procedia PDF Downloads 294
7311 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation

Authors: Hugo Sampaio Libero, Max de Castro Magalhaes

Abstract:

The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.

Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests

Procedia PDF Downloads 96
7310 Influence of Geologic and Geotechnical Dataset Resolution on Regional Liquefaction Assessment of the Lower Wairau Plains

Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense

Abstract:

The Wairau Plains are located in the northeast of the South Island of New Zealand, with alluvial deposits of fine-grained silts and sands combined with low-lying topography suggesting the presence of liquefiable deposits over significant portions of the region. Liquefaction manifestations were observed in past earthquakes, including the 1848 Marlborough and 1855 Wairarapa earthquakes, and more recently during the 2013 Lake Grassmere and 2016 Kaikōura earthquakes. Therefore, a good understanding of the deposits that may be susceptible to liquefaction is important for land use planning in the region and to allow developers and asset owners to appropriately address their risk. For this purpose, multiple approaches have been employed to develop regional-scale maps showing the liquefaction vulnerability categories for the region. After applying semi-qualitative criteria linked to geologic age and deposit type, the higher resolution surface mapping of geomorphologic characteristics encompassing the Wairau River and the Opaoa River was used for screening. A detailed basin geologic model developed for groundwater modelling was analysed to provide a higher level of resolution than the surface-geology based classification. This is used to identify the thickness of near-surface gravel deposits, providing an improved understanding of the presence or lack of potentially non-liquefiable crust deposits. This paper describes the methodology adopted for this project and focuses on the influence of geomorphic characteristics and analysis of the detailed geologic basin model on the liquefaction classification of the Lower Wairau Plains.

Keywords: liquefaction, earthquake, cone penetration test, mapping, liquefaction-induced damage

Procedia PDF Downloads 179
7309 Development of Taiwanese Sign Language Receptive Skills Test for Deaf Children

Authors: Hsiu Tan Liu, Chun Jung Liu

Abstract:

It has multiple purposes to develop a sign language receptive skills test. For example, this test can be used to be an important tool for education and to understand the sign language ability of deaf children. There is no available test for these purposes in Taiwan. Through the discussion of experts and the references of standardized Taiwanese Sign Language Receptive Test for adults and adolescents, the frame of Taiwanese Sign Language Receptive Skills Test (TSL-RST) for deaf children was developed, and the items were further designed. After multiple times of pre-trials, discussions and corrections, TSL-RST is finally developed which can be conducted and scored online. There were 33 deaf children who agreed to be tested from all three deaf schools in Taiwan. Through item analysis, the items were picked out that have good discrimination index and fair difficulty index. Moreover, psychometric indexes of reliability and validity were established. Then, derived the regression formula was derived which can predict the sign language receptive skills of deaf children. The main results of this study are as follows. (1). TSL-RST includes three sub-test of vocabulary comprehension, syntax comprehension and paragraph comprehension. There are 21, 20, and 9 items in vocabulary comprehension, syntax comprehension, and paragraph comprehension, respectively. (2). TSL-RST can be conducted individually online. The sign language ability of deaf students can be calculated fast and objectively, so that they can get the feedback and results immediately. This can also contribute to both teaching and research. The most subjects can complete the test within 25 minutes. While the test procedure, they can answer the test questions without relying on their reading ability or memory capacity. (3). The sub-test of the vocabulary comprehension is the easiest one, syntax comprehension is harder than vocabulary comprehension and the paragraph comprehension is the hardest. Each of the three sub-test and the whole test are good in item discrimination index. (4). The psychometric indices are good, including the internal consistency reliability (Cronbach’s α coefficient), test-retest reliability, split-half reliability, and content validity. The sign language ability are significantly related to non-verbal IQ, the teachers’ rating to the students’ sign language ability and students’ self-rating to their own sign language ability. The results showed that the higher grade students have better performance than the lower grade students, and students with deaf parent perform better than those with hearing parent. These results made TLS-RST have great discriminant validity. (5). The predictors of sign language ability of primary deaf students are age and years of starting to learn sign language. The results of this study suggested that TSL-RST can effectively assess deaf student’s sign language ability. This study also proposed a model to develop a sign language tests.

Keywords: comprehension test, elementary school, sign language, Taiwan sign language

Procedia PDF Downloads 192
7308 Participatory Culture and Value Perception Amongst the Korean and Chinese Drama International Fandom

Authors: Patricia P. M. C. Lourenco, Javier Bringué Sala, Anaisa D. A. de Sena

Abstract:

Almost everyone in Dramaland knows the names of big Korean stars that grace their computer screens on a roll through social media and video streaming platforms that enable awareness of Korean dramas and lifestyle at a click. A surface culture instilled with notions of belonging has redefined the meaning of friendship and challenged deep inner values. Not everyone, however, knows Chinese Dramas or their stars, which is a consequence of Dramaland's focus on Korean dramas and promoting the Korean experience. Despite a parity in terms of production quality, star power, scripts and compelling visual settings, Chinese Dramas have been playing catch up to their famous counterparts. While they might have a strong competitive soft power for international drama fans, the soft power of Korean dramas is imbued with substantial societal values that they want to share with others. Those values are portrayed in an artistic way that connects with audiences who experience loneliness in the non-virtual world contrary to the way Chinese Dramas are perceived.

Keywords: Chinese dramas, fandom, Korean dramas, participatory culture, value perception, soft power, surface culture

Procedia PDF Downloads 172
7307 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide

Authors: Sanjay M. Tailor, Urmila H. Patel

Abstract:

Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.

Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking

Procedia PDF Downloads 352
7306 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 165
7305 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 217
7304 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 274
7303 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 153
7302 Selection of Soil Quality Indicators of Rice Cropping Systems Using Minimum Data Set Influenced by Imbalanced Fertilization

Authors: Theresa K., Shanmugasundaram R., Kennedy J. S.

Abstract:

Nutrient supplements are indispensable for raising crops and to reap determining productivity. The nutrient imbalance between replenishment and crop uptake is attempted through the input of inorganic fertilizers. Excessive dumping of inorganic nutrients in soil cause stagnant and decline in yield. Imbalanced N-P-K ratio in the soil exacerbates and agitates the soil ecosystems. The study evaluated the fertilization practices of conventional (CFs), organic and Integrated Nutrient Management system (INM) on soil quality using key indicators and soil quality indices. Twelve rice farming fields of which, ten fields were having conventional cultivation practices, one field each was organic farming based and INM based cultivated under monocropping sequence in the Thondamuthur block of Coimbatore district were fixed and properties viz., physical, chemical and biological were studied for four cropping seasons to determine soil quality index (SQI). SQI was computed for conventional, organic and INM fields. Comparing conventional farming (CF) with organic and INM, CF was recorded with a lower soil quality index. While in organic and INM fields, the higher SQI value of 0.99 and 0.88 respectively were registered. CF₄ received with a super-optimal dose of N (250%) showed a lesser SQI value (0.573) as well as the yield (3.20 t ha⁻¹) and the CF6 which received 125 % N recorded the highest SQI (0.715) and yield (6.20 t ha⁻¹). Likewise, most of the CFs received higher N beyond the level of 125 % except CF₃ and CF₉, which recorded lower yields. CFs which received super-optimal P in the order of CF₆&CF₇>CF₁&CF₁₀ recorded lesser yields except for CF₆. Super-optimal K application also recorded lesser yield in CF₄, CF₇ and CF₉.

Keywords: rice cropping system, soil quality indicators, imbalanced fertilization, yield

Procedia PDF Downloads 160
7301 Effect of Treated Grey Water on Bacterial Concrete

Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.

Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater

Procedia PDF Downloads 102
7300 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 396
7299 An Assessment of Water and Sediment Quality of the Danube River: Polycyclic Aromatic Hydrocarbons and Trace Metals

Authors: A. Szabó Nagy, J. Szabó, I. Vass

Abstract:

Water and sediment samples from the Danube River and Moson Danube Arm (Hungary) have been collected and analyzed for contamination by 18 polycyclic aromatic hydrocarbons (PAHs) and eight trace metal(loid)s (As, Cu, Pb, Ni, Cr, Cd, Hg and Zn) in the period of 2014-2015. Moreover, the trace metal(loid) concentrations were measured in the Rába and Marcal rivers (parts of the tributary system feeding the Danube). Total PAH contents in water were found to vary from 0.016 to 0.133 µg/L and concentrations in sediments varied in the range of 0.118 mg/kg and 0.283 mg/kg. Source analysis of PAHs using diagnostic concentration ratios indicated that PAHs found in sediments were of pyrolytic origins. The dissolved trace metal and arsenic concentrations were relatively low in the surface waters. However, higher concentrations were detected in the water samples of Rába (Zn, Cu, Ni, Pb) and Marcal (As, Cu, Ni, Pb) compared to the Danube and Moson Danube. The concentrations of trace metals in sediments were higher than those found in water samples.

Keywords: surface water, sediment, PAH, trace metal

Procedia PDF Downloads 318
7298 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 249
7297 Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions

Authors: Ketevan Janashia, Tamar Tsibadze, Levan Tvildiani, Nikoloz Invia, Elguja Kubaneishvili, Vasili Kukhianidze, George Ramishvili

Abstract:

This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions.

Keywords: autonomic nervous system, device of magneto compensation/simulation, geomagnetic storms, heart rate variability

Procedia PDF Downloads 147
7296 Copper Selenide Nanobelts: An Electrocatalyst for Methanol Electro-Oxidation Reaction

Authors: Nabi Ullah

Abstract:

The energy crisis of the current society has attracted research attention for alternative energy sources. Methanol oxidation is the source of energy but needs efficient electrocatalysts like Pt. However, their practical ability is hindered due to cost and poisoning effects. In this regard, an efficient catalyst is required for methanol oxidation. Herein, high temperature, pressure, and diethylenetryamine (DETA) as reaction medium/structure directing agent during the solvothermal method are used for nanobelt Cu₃Se₂/Cu₁.₈Se (mostly hexagonal appearance) formation. The electrocatalyst shows optimized methanol electrooxidation reaction (MOR) response in 1 M KOH and 0.5 M methanol at a scan rate of 50 mV/s and delivers a current density of 7.12 mA/mg at a potential of 0.65 V (vs Ag/AgCl). The catalyst exhibits high electrochemical active surface area (ECSA) (0.088 mF/cm²) and low Rct with good stability for 3600 s, which favors its high MOR performance. This high response is due to its 2D hexagonal nanobelt morphology, which provides a large surface area for reaction. The space among nanobelts reduces diffusion kinetics, and the rough/irregular edge increases the reaction site to improve the methanol oxidation reaction overall.

Keywords: energy application, electrocatalysis, MOR, nanobelt

Procedia PDF Downloads 72
7295 Testing the Possibility of Healthy Individuals to Mimic Fatigability in Multiple Sclerotic Patients

Authors: Emmanuel Abban Sagoe

Abstract:

A proper functioning of the Central Nervous System ensures that we are able to accomplish just about everything we do as human beings such as walking, breathing, running, etc. Myelinated neurons throughout the body which transmit signals at high speeds facilitate these actions. In the case of MS, the body’s immune system attacks the myelin sheath surrounding the neurons and overtime destroys the myelin sheaths. Depending upon where the destruction occurs in the brain symptoms can vary from person to person. Fatigue is, however, the biggest problem encountered by an MS sufferer. It is very often described as the bedrock upon which other symptoms of MS such challenges in balance and coordination, dizziness, slurred speech, etc. may occur. Classifying and distinguishing between perceptions based fatigue and performance based fatigability is key to identifying appropriate treatment options for patients. Objective methods for assessing motor fatigability is also key to providing clinicians and physiotherapist with critical information on the progression of the symptom. This study tested if the Fatigue Index Kliniken Schmieder assessment tool can detect fatigability as seen in MS patients when healthy subjects with no known history of neurological pathology mimic abnormal gaits. Thirty three healthy adults between ages 18-58years volunteered as subjects for the study. The subjects, strapped with RehaWatch sensors on both feet, completed 6 gait protocols of normal and mimicked fatigable gaits for 60 seconds per each gait and at 1.38889m/s treadmill speed following clear instructions given.

Keywords: attractor attributes, fatigue index Kliniken Schmieder, gait variability, movement pattern

Procedia PDF Downloads 128
7294 Seismic Vulnerability Assessment of Masonry Buildings in Seismic Prone Regions: The Case of Annaba City, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

Seismic vulnerability assessment of masonry buildings is a fundamental issue even for moderate to low seismic hazard regions. This fact is even more important when dealing with old structures such as those located in Annaba city (Algeria), which the majority of dates back to the French colonial era from 1830. This category of buildings is in high risk due to their highly degradation state, heterogeneous materials and intrusive modifications to structural and non-structural elements. Furthermore, they are usually shelter a dense population, which is exposed to such risk. In order to undertake a suitable seismic risk mitigation strategies and reinforcement process for such structures, it is essential to estimate their seismic resistance capacity at a large scale. In this sense, two seismic vulnerability index methods and damage estimation have been adapted and applied to a pilot-scale building area located in the moderate seismic hazard region of Annaba city: The first one based on the EMS-98 building typologies, and the second one derived from the Italian GNDT approach. To perform this task, the authors took the advantage of an existing data survey previously performed for other purposes. The results obtained from the application of the two methods were integrated and compared using a geographic information system tool (GIS), with the ultimate goal of supporting the city council of Annaba for the implementation of risk mitigation and emergency planning strategies.

Keywords: Annaba city, EMS98 concept, GNDT method, old city center, seismic vulnerability index, unreinforced masonry buildings

Procedia PDF Downloads 622
7293 Evaluation of the Anti Ulcer Activity of Ethyl Acetate Fraction of Methanol Leaf Extract of Clerodendrum Capitatum

Authors: M. N. Ofokansi, Onyemelukwe Chisom, Amauche Chukwuemeka, Ezema Onyinye

Abstract:

The leaves of Clerodendrumcapitatum(Lamiaceae) is mostly used in the treatment of gastric ulcer in Nigerian folk medicine. The aim of this study was to evaluate the antiulcer activity of its crude methanol leaf extract and its ethyl acetate fraction in white albino rats. The effect of crude methanol leaf extract and its ethyl acetate fraction(250mg/kg, 500mg/kg) was evaluated using an absolute ethanol induced ulcer model. Crude methanol leaf extract and the ethyl acetate fraction was treated with distilled water and 6% Tween 80, respectively. crude methanol leaf extract was further investigated using a pylorus ligation induced ulcer model. Omeprazole was used as the standard treatment. Four groups of five albino rats of either sex were used. Parameters such as mean ulcer index and percentage ulcer protection were assessed in the ethanol-induced ulcer model, while the gastric volume, pH, and total acidity were assessed in the pyloric ligation induced ulcer model. Crude methanol leaf extract of Clerodendrumcapitatum(500mg/kg) showed a very highly significant reduction in mean ulcer index(p<0.001) in the absolute ethanol-induced model. ethyl acetate fraction of crude methanol leaf extract of Clerodendrumcapitatum(250mg/kg,500mg/kg) showed a very highly significant dose-dependent reduction in mean ulcer indices (p<0.001) in the absolute ethanol-induced model. The mean ulcer indices (1.6,2.2) with dose concentration (250mg/kg, 500mg/kg) of ethyl acetate fraction increased with ulcer protection (82.85%,76.42%) respectively when compared to the control group in the absolute ethanol-induced ulcer model. Crude methanol leaf extract of Clerodendrumcapitatum(250mg/kg, 500mg/kg) treated animals showed a highly significant dose-dependent reduction in mean ulcer index(p<0.01) with an increase in ulcer protection (56.77%,63.22%) respectively in pyloric ligated induced, ulcer model. Gastric parameters such as volume of gastric juice, pH, and total acidity were of no significance in the different doses of the crude methanol leaf extract when compared to the control group. The phytochemical investigation showed that the crude methanol leaf extracts Possess Saponins and Flavonoids while its ethyl acetate fraction possess only Flavonoids. The results of the study indicate that the crude methanol leaf extract and its ethyl acetate fraction is effective and has gastro protective and ulcer healing capacity. Ethyl acetate fraction is more potent than crude methanol leaf extract against ethanol-induced This result provides scientific evidence as a validation for its folkloric use in the treatment of gastric ulcer.

Keywords: gastroprotective, herbal medicine, anti-ulcer, pharmacology

Procedia PDF Downloads 170