Search results for: random waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2811

Search results for: random waves

111 Exploratory Study on Mediating Role of Commitment-to-Change in Relations between Employee Voice, Employee Involvement and Organizational Change Readiness

Authors: Rohini Sharma, Chandan Kumar Sahoo, Rama Krishna Gupta Potnuru

Abstract:

Strong competitive forces and requirements to achieve efficiency are forcing the organizations to realize the necessity and inevitability of change. What's more, the trend does not appear to be abating. Researchers have estimated that about two thirds of change project fails. Empirical evidences further shows that organizations invest significantly in the planned change but people side is accounted for in a token or instrumental way, which is identified as one of the important reason, why change endeavours fail. However, whatever be the reason for change, organizational change readiness must be gauged prior to the institutionalization of organizational change. Hence, in this study the influence of employee voice and employee involvement on organizational change readiness via commitment-to-change is examined, as it is an area yet to be extensively studied. Also, though a recent study has investigated the interrelationship between leadership, organizational change readiness and commitment to change, our study further examined these constructs in relation with employee voice and employee involvement that plays a consequential role for organizational change readiness. Further, integrated conceptual model weaving varied concepts relating to organizational readiness with focus on commitment to change as mediator was found to be an area, which required more theorizing and empirical validation, and this study rooted in an Indian public sector organization is a step in this direction. Data for the study were collected through a survey among employees of Rourkela Steel Plant (RSP), a unit of Steel Authority of India Limited (SAIL); the first integrated Steel Plant in the public sector in India, for which stratified random sampling method was adopted. The schedule was distributed to around 700 employees, out of which 516 complete responses were obtained. The pre-validated scales were used for the study. All the variables in the study were measured on a five-point Likert scale ranging from “strongly disagree (1)” to “strongly agree (5)”. Structural equation modeling (SEM) using AMOS 22 was used to examine the hypothesized model, which offers a simultaneous test of an entire system of variables in a model. The study results shows that inter-relationship between employee voice and commitment-to-change, employee involvement and commitment-to-change and commitment-to-change and organizational change readiness were significant. To test the mediation hypotheses, Baron and Kenny’s technique was used. Examination of direct and mediated effect of mediators confirmed that commitment-to-change partially mediated the relation between employee involvement and organizational change readiness. Furthermore, study results also affirmed that commitment-to-change does not mediate the relation between employee involvement and organizational change readiness. The empirical exploration therefore establishes that it is important to harness employee’s valuable suggestions regarding change for building organizational change readiness. Regarding employee involvement, it was found that sharing information and involving people in decision-making, leads to a creation of participative climate, which educes employee commitment during change and commitment-to-change further, fosters organizational change readiness.

Keywords: commitment-to-change, change management, employee voice, employee involvement, organizational change readiness

Procedia PDF Downloads 328
110 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 258
109 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor

Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini

Abstract:

Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.

Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance

Procedia PDF Downloads 282
108 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal

Authors: Saikat Majumdar, D. C. Kalita

Abstract:

The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.

Keywords: agricultural infrastructure, adoption of technology, farm income, road network

Procedia PDF Downloads 102
107 Health and Performance Fitness Assessment of Adolescents in Middle Income Schools in Lagos State

Authors: Onabajo Paul

Abstract:

The testing and assessment of physical fitness of school-aged adolescents in Nigeria has been going on for several decades. Originally, these tests strictly focused on identifying health and physical fitness status and comparing the results of adolescents with others. There is a considerable interest in health and performance fitness of adolescents in which results attained are compared with criteria representing positive health rather than simply on score comparisons with others. Despite the fact that physical education program is being studied in secondary schools and physical activities are encouraged, it is observed that regular assessment of students’ fitness level and health status seems to be scarce or not being done in these schools. The purpose of the study was to assess the heath and performance fitness of adolescents in middle-income schools in Lagos State. A total number of 150 students were selected using the simple random sampling technique. Participants were measured on hand grip strength, sit-up, pacer 20 meter shuttle run, standing long jump, weight and height. The data collected were analyzed with descriptive statistics of means, standard deviations, and range and compared with fitness norms. It was concluded that majority 111(74.0%) of the adolescents achieved the healthy fitness zone, 33(22.0%) were very lean, and 6(4.0%) needed improvement according to the normative standard of Body Mass Index test. For muscular strength, majority 78(52.0%) were weak, 66(44.0%) were normal, and 6(4.0%) were strong according to the normative standard of hand-grip strength test. For aerobic capacity fitness, majority 93(62.0%) needed improvement and were at health risk, 36(24.0%) achieved healthy fitness zone, and 21(14.0%) needed improvement according to the normative standard of PACER test. Majority 48(32.0%) of the participants had good hip flexibility, 38(25.3%) had fair status, 27(18.0%) needed improvement, 24(16.0%) had very good hip flexibility status, and 13(8.7%) of the participants had excellent status. Majority 61(40.7%) had average muscular endurance status, 30(20.0%) had poor status, 29(18.3%) had good status, 28(18.7%) had fair muscular endurance status, and 2(1.3%) of the participants had excellent status according to the normative standard of sit-up test. Majority 52(34.7%) had low jump ability fitness, 47(31.3%) had marginal fitness, 31(20.7%) had good fitness, and 20(13.3%) had high performance fitness according to the normative standard of standing long jump test. Based on the findings, it was concluded that majority of the adolescents had better Body Mass Index status, and performed well in both hip flexibility and muscular endurance tests. Whereas majority of the adolescents performed poorly in aerobic capacity test, muscular strength and jump ability test. It was recommended that to enhance wellness, adolescents should be involved in physical activities and recreation lasting 30 minutes three times a week. Schools should engage in fitness program for students on regular basis at both senior and junior classes so as to develop good cardio-respiratory, muscular fitness and improve overall health of the students.

Keywords: adolescents, health-related fitness, performance-related fitness, physical fitness

Procedia PDF Downloads 354
106 Phage Display-Derived Vaccine Candidates for Control of Bovine Anaplasmosis

Authors: Itzel Amaro-Estrada, Eduardo Vergara-Rivera, Virginia Juarez-Flores, Mayra Cobaxin-Cardenas, Rosa Estela Quiroz, Jesus F. Preciado, Sergio Rodriguez-Camarillo

Abstract:

Bovine anaplasmosis is an infectious, tick-borne disease caused mainly by Anaplasma marginale; typical signs include anemia, fever, abortion, weight loss, decreased milk production, jaundice, and potentially death. Sick bovine can recover when antibiotics are administered; however, it usually remains as carrier for life, being a risk of infection for susceptible cattle. Anaplasma marginale is an obligate intracellular Gram-negative bacterium with genetic composition highly diverse among geographical isolates. There are currently no vaccines fully effective against bovine anaplasmosis; therefore, the economic losses due to disease are present. Vaccine formulation became a hard task for several pathogens as Anaplasma marginale, but peptide-based vaccines are an interesting proposal way to induce specific responses. Phage-displayed peptide libraries have been proved one of the most powerful technologies for identifying specific ligands. Screening of these peptides libraries is also a tool for studying interactions between proteins or peptides. Thus, it has allowed the identification of ligands recognized by polyclonal antiserums, and it has been successful for the identification of relevant epitopes in chronic diseases and toxicological conditions. Protective immune response to bovine anaplasmosis includes high levels of immunoglobulins subclass G2 (IgG2) but not subclass IgG1. Therefore, IgG2 from the serum of protected bovine can be useful to identify ligands, which can be part of an immunogen for cattle. In this work, phage display random peptide library Ph.D. ™ -12 was incubating with IgG2 or blood sera of immunized bovines against A. marginale as targets. After three rounds of biopanning, several candidates were selected for additional analysis. Subsequently, their reactivity with sera immunized against A. marginale, as well as with positive and negative sera to A. marginale was evaluated by immunoassays. A collection of recognized peptides tested by ELISA was generated. More than three hundred phage-peptides were separately evaluated against molecules which were used during panning. At least ten different peptides sequences were determined from their nucleotide composition. In this approach, three phage-peptides were selected by their binding and affinity properties. In the case of the development of vaccines or diagnostic reagents, it is important to evaluate the immunogenic and antigenic properties of the peptides. Immunogenic in vitro and in vivo behavior of peptides will be assayed as synthetic and as phage-peptide for to determinate their vaccine potential. Acknowledgment: This work was supported by grant SEP-CONACYT 252577 given to I. Amaro-Estrada.

Keywords: bovine anaplasmosis, peptides, phage display, veterinary vaccines

Procedia PDF Downloads 143
105 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India

Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh

Abstract:

Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.

Keywords: 3D analysis, Himalayan geology, shear zone, underground power house

Procedia PDF Downloads 88
104 Using the Theory of Reasoned Action and Parental Mediation Theory to Examine Cyberbullying Perpetration among Children and Adolescents

Authors: Shirley S. Ho

Abstract:

The advancement and development of social media have inadvertently brought about a new form of bullying – cyberbullying – that transcends across physical boundaries of space. Although extensive research has been conducted in the field of cyberbullying, most of these studies have taken an overwhelmingly empirical angle. Theories guiding cyberbullying research are few. Furthermore, very few studies have explored the association between parental mediation and cyberbullying, with majority of existing studies focusing on cyberbullying victimization rather than perpetration. Therefore, this present study investigates cyberbullying perpetration from a theoretical angle, with a focus on the Theory of Reasoned Action and the Parental Mediation Theory. More specifically, this study examines the direct effects of attitude, subjective norms, descriptive norms, injunctive norms and active mediation and restrictive mediation on cyberbullying perpetration on social media among children and adolescents in Singapore. Furthermore, the moderating role of age on the relationship between parental mediation and cyberbullying perpetration on social media are examined. A self-administered paper-and-pencil nationally-representative survey was conducted. Multi-stage cluster random sampling was used to ensure that schools from all the four (North, South, East, and West) regions of Singapore were equally represented in the sample used for the survey. In all 607 upper primary school children (i.e., Primary 4 to 6 students) and 782 secondary school adolescents participated in our survey. The total average response rates were 69.6% for student participation. An ordinary least squares hierarchical regression analysis was conducted to test the hypotheses and research questions. The results revealed that attitude and subjective norms were positively associated with cyberbullying perpetration on social media. Descriptive norms and injunctive norms were not found to be significantly associated with cyberbullying perpetration. The results also showed that both parental mediation strategies were negatively associated with cyberbullying perpetration on social media. Age was a significant moderator of both parental mediation strategies and cyberbullying perpetration. The negative relationship between active mediation and cyberbullying perpetration was found to be greater in the case of children than adolescents. Children who received high restrictive parental mediation were less likely to perform cyberbullying behaviors, while adolescents who received high restrictive parental mediation were more likely to be engaged in cyberbullying perpetration. The study reveals that parents should apply active mediation and restrictive mediation in different ways for children and adolescents when trying to prevent cyberbullying perpetration. The effectiveness of active parental mediation for reducing cyberbullying perpetration was more in the case of children than for adolescents. Younger children were found to be more likely to respond more positively toward restrictive parental mediation strategies, but in the case of adolescents, overly restrictive control was found to increase cyberbullying perpetration. Adolescents exhibited less cyberbullying behaviors when under low restrictive strategies. Findings highlight that the Theory of Reasoned Action and Parental Mediation Theory are promising frameworks to apply in the examination of cyberbullying perpetration. The findings that different parental mediation strategies had differing effectiveness, based on the children’s age, bring about several practical implications that may benefit educators and parents when addressing their children’s online risk.

Keywords: cyberbullying perpetration, theory of reasoned action, parental mediation, social media, Singapore

Procedia PDF Downloads 254
103 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review

Authors: Hanan Algarni

Abstract:

Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.

Keywords: virtual reality, treadmill, stroke, gait rehabilitation

Procedia PDF Downloads 274
102 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 246
101 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 12
100 Impact of 6-Week Brain Endurance Training on Cognitive and Cycling Performance in Highly Trained Individuals

Authors: W. Staiano, S. Marcora

Abstract:

Introduction: It has been proposed that acute negative effect of mental fatigue (MF) could potentially become a training stimulus for the brain (Brain endurance training (BET)) to adapt and improve its ability to attenuate MF states during sport competitions. Purpose: The aim of this study was to test the efficacy of 6 weeks of BET on cognitive and cycling tests in a group of well-trained subjects. We hypothesised that combination of BET and standard physical training (SPT) would increase cognitive capacity and cycling performance by reducing rating of perceived exertion (RPE) and increase resilience to fatigue more than SPT alone. Methods: In a randomized controlled trial design, 26 well trained participants, after a familiarization session, cycled to exhaustion (TTE) at 80% peak power output (PPO) and, after 90 min rest, at 65% PPO, before and after random allocation to a 6 week BET or active placebo control. Cognitive performance was measured using 30 min of STROOP coloured task performed before cycling performance. During the training, BET group performed a series of cognitive tasks for a total of 30 sessions (5 sessions per week) with duration increasing from 30 to 60 min per session. Placebo engaged in a breathing relaxation training. Both groups were monitored for physical training and were naïve to the purpose of the study. Physiological and perceptual parameters of heart rate, lactate (LA) and RPE were recorded during cycling performances, while subjective workload (NASA TLX scale) was measured during the training. Results: Group (BET vs. Placebo) x Test (Pre-test vs. Post-test) mixed model ANOVA’s revealed significant interaction for performance at 80% PPO (p = .038) or 65% PPO (p = .011). In both tests, groups improved their TTE performance; however, BET group improved significantly more compared to placebo. No significant differences were found for heart rate during the TTE cycling tests. LA did not change significantly at rest in both groups. However, at completion of 65% TTE, it was significantly higher (p = 0.043) in the placebo condition compared to BET. RPE measured at ISO-time in BET was significantly lower (80% PPO, p = 0.041; 65% PPO p= 0.021) compared to placebo. Cognitive results in the STROOP task showed that reaction time in both groups decreased at post-test. However, BET decreased significantly (p = 0.01) more compared to placebo despite no differences accuracy. During training sessions, participants in the BET showed, through NASA TLX questionnaires, constantly significantly higher (p < 0.01) mental demand rates compared to placebo. No significant differences were found for physical demand. Conclusion: The results of this study provide evidences that combining BET and SPT seems to be more effective than SPT alone in increasing cognitive and cycling performance in well trained endurance participants. The cognitive overload produced during the 6-week training of BET can induce a reduction in perception of effort at a specific power, and thus improving cycling performance. Moreover, it provides evidence that including neurocognitive interventions will benefit athletes by increasing their mental resilience, without affecting their physical training load and routine.

Keywords: cognitive training, perception of effort, endurance performance, neuro-performance

Procedia PDF Downloads 121
99 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 269
98 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 28
97 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 148
96 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 353
95 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images

Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget

Abstract:

In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).

Keywords: agricultural practices, remote sensing, rice, yield

Procedia PDF Downloads 275
94 Relationship between Thumb Length and Pointing Performance on Portable Terminal with Touch-Sensitive Screen

Authors: Takahiro Nishimura, Kouki Doi, Hiroshi Fujimoto

Abstract:

Touch-sensitive screens that serve as displays and input devices have been adopted in many portable terminals such as smartphones and personal media players, and the market of touch-sensitive screens has expanded greatly. One of the advantages of touch-sensitive screen is the flexibility in the graphical user interface (GUI) design, and it is imperative to design an appropriate GUI to realize an easy-to-use interface. Moreover, it is important to evaluate the relationship between pointing performance and GUI design. There is much knowledge regarding easy-to-use GUI designs for portable terminals with touch-sensitive screens, and most have focused on GUI design approaches for women or children with small hands. In contrast, GUI design approaches for users with large hands have not received sufficient attention. In this study, to obtain knowledge that contributes to the establishment of individualized easy-to-use GUI design guidelines, we conducted experiments to investigate the relationship between thumb length and pointing performance on portable terminals with touch-sensitive screens. In this study, fourteen college students who participated in the experiment were divided into two groups based on the length of their thumbs. Specifically, we categorized the participants into two groups, thumbs longer than 64.2 mm into L (Long) group, and thumbs longer than 57.4 mm but shorter than 64.2 mm into A (Average) group, based on Japanese anthropometric database. They took part in this study under the authorization of Waseda University’s ‘Ethics Review Committee on Research with Human Subjects’. We created an application for the experimental task and implemented it on the projected capacitive touch-sensitive screen portable terminal (iPod touch (4th generation)). The display size was 3.5 inch and 960 × 640 - pixel resolution at 326 ppi (pixels per inch). This terminal was selected as the experimental device, because of its wide use and market share. The operational procedure of the application is as follows. First, the participants placed their thumb on the start position. Then, one cross-shaped target in a 10 × 7 array of 70 positions appeared at random. The participants pointed the target with their thumb as accurately and as fast as possible. Then, they returned their thumb to the start position and waited. The operation ended when this procedure had been repeated until all 70 targets had each been pointed at once by the participants. We adopted the evaluation indices for absolute error, variable error, and pointing time to investigate pointing performance when using the portable terminal. The results showed that pointing performance varied with thumb length. In particular, on the lower right side of the screen, the performance of L group with long thumb was low. Further, we presented an approach for designing easy-to- use button GUI for users with long thumbs. The contributions of this study include revelation of the relationship between pointing performance and user’s thumb length when using a portable terminal in terms of accuracy, precision, and speed of pointing. We hope that these findings contribute to an easy-to-use GUI design for users with large hands.

Keywords: pointing performance, portable terminal, thumb length, touch-sensitive screen

Procedia PDF Downloads 164
93 Kansei Engineering Applied to the Design of Rural Primary Education Classrooms: Design-Based Learning Case

Authors: Jimena Alarcon, Andrea Llorens, Gabriel Hernandez, Maritza Palma, Lucia Navarrete

Abstract:

The research has funding from the Government of Chile and is focused on defining the design of rural primary classroom that stimulates creativity. The relevance of the study consists of its capacity to define adequate educational spaces for the implementation of the design-based learning (DBL) methodology. This methodology promotes creativity and teamwork, generating a meaningful learning experience for students, based on the appreciation of their environment and the generation of projects that contribute positively to their communities; also, is an inquiry-based form of learning that is based on the integration of design thinking and the design process into the classroom. The main goal of the study is to define the design characteristics of rural primary school classrooms, associated with the implementation of the DBL methodology. Along with the change in learning strategies, it is necessary to change the educational spaces in which they develop. The hypothesis indicates that a change in the space and equipment of the classrooms based on the emotions of the students will motivate better learning results based on the implementation of a new methodology. In this case, the pedagogical dynamics require an important interaction between the participants, as well as an environment favorable to creativity. Methodologies from Kansei engineering are used to know the emotional variables associated with their definition. The study is done to 50 students between 6 and 10 years old (average age of seven years), 48% of men and 52% women. Virtual three-dimensional scale models and semantic differential tables are used. To define the semantic differential, self-applied surveys were carried out. Each survey consists of eight separate questions in two groups: question A to find desirable emotions; question B related to emotions. Both questions have a maximum of three alternatives to answer. Data were tabulated with IBM SPSS Statistics version 19. Terms referred to emotions are grouped into twenty concepts with a higher presence in surveys. To select the values obtained as part of the implementation of Semantic Differential, a number expected of 'chi-square test (x2)' frequency calculated for classroom space is considered lower limit. All terms over the N expected a cut point, are included to prepare tables for surveys to find a relation between emotion and space. Statistic contrast (Chi-Square) represents significance level ≥ 0, indicator that frequencies appeared are not random. Then, the most representative terms depend on the variable under study: a) definition of textures and color of vertical surfaces is associated with emotions such as tranquility, attention, concentration, creativity; and, b) distribution of the equipment of the rooms, with emotions associated with happiness, distraction, creativity, freedom. The main findings are linked to the generation of classrooms according to diverse DBL team dynamics. Kansei engineering is the appropriate methodology to know the emotions that students want to feel in the classroom space.

Keywords: creativity, design-based learning, education spaces, emotions

Procedia PDF Downloads 142
92 Impact of Pharmacist-Led Care on Glycaemic Control in Patients with Type 2 Diabetes: A Randomised-Controlled Trial

Authors: Emmanuel A. David, Rebecca O. Soremekun, Roseline I. Aderemi-Williams

Abstract:

Background: The complexities involved in the management of diabetes mellitus require a multi-dimensional, multi-professional collaborative and continuous care by health care providers and a substantial self-care by the patients in order to achieve desired treatment outcomes. The effect of pharmacists’ care in the management of diabetes in resource-endowed nations is well documented in literature, but randomised-controlled assessment of the impact of pharmacist-led care among patients with diabetes in resource-limited settings like Nigeria and sub-Saharan Africa countries is scarce. Objective: To evaluate the impact of Pharmacist-led care on glycaemic control in patients with uncontrolled type 2 diabetes, using a randomised-controlled study design Methods: This study employed a prospective randomised controlled design, to assess the impact of pharmacist-led care on glycaemic control of 108 poorly controlled type 2 diabetic patients. A total of 200 clinically diagnosed type 2 diabetes patients were purposively selected using fasting blood glucose ≥ 7mmol/L and tested for long term glucose control using Glycated haemoglobin measure. One hundred and eight (108) patients with ≥ 7% Glycated haemoglobin were recruited for the study and assigned unique identification numbers. They were further randomly allocated to intervention and usual care groups using computer generated random numbers, with each group containing 54 subjects. Patients in the intervention group received pharmacist-structured intervention, including education, periodic phone calls, adherence counselling, referral and 6 months follow-up, while patients in usual care group only kept clinic appointments with their physicians. Data collected at baseline and six months included socio-demographic characteristics, fasting blood glucose, Glycated haemoglobin, blood pressure, lipid profile. With an intention to treat analysis, Mann-Whitney U test was used to compared median change from baseline in the primary outcome (Glycated haemoglobin) and secondary outcomes measure, effect size was computed and proportion of patients that reached target laboratory parameter were compared in both arms. Results: All enrolled participants (108) completed the study, 54 in each study. Mean age was 51±11.75 and majority were female (68.5%). Intervention patients had significant reduction in Glycated haemoglobin (-0.75%; P<0.001; η2 = 0.144), with greater proportion attaining target laboratory parameter after 6 months of care compared to usual care group (Glycated haemoglobin: 42.6% vs 20.8%; P=0.02). Furthermore, patients who received pharmacist-led care were about 3 times more likely to have better glucose control (AOR 2.718, 95%CI: 1.143-6.461) compared to usual care group. Conclusion: Pharmacist-led care significantly improved glucose control in patients with uncontrolled type 2 diabetes mellitus and should be integrated in the routine management of diabetes patients, especially in resource-limited settings.

Keywords: glycaemic control , pharmacist-led care, randomised-controlled trial , type 2 diabetes mellitus

Procedia PDF Downloads 122
91 A Comparative Study of the Impact of the Total Fertility Rate (TFR) on Trends in the Second Demographic Transition in Rwanda

Authors: Etienne Gatera

Abstract:

Many studies have been conducted on SDT. Most of them focus on developed countries because of influencing factors such as; education, health, labor force, female labor force participation, industrialization, urbanization and migration. However, this thesis project paper aims to assess the impact of the total fertility rate (TFR) on the trends of the SDR in Rwanda. We will mainly be based in Rwanda after the 1994 genocide. Rwanda is located in East Africa, with approximately 13 million inhabitants. Thus, after the 1994 Tutsi genocide. The population growth rate exploded out of control with 6.17 children per woman in 1995. However, it's declined to 4.2 in 2014-2015 and declining to 4.1% in 2019-2020. Respectively with 3.4 children per woman in urban areas and 4.3 in rural areas. According to the National Institute of Statistics of Rwanda. Rwanda's population is expected to continue to grow for the rest of the century and reach 33.35 million people in 2099, with 2.1 children per woman in 2050. However, this project document aims to demonstrate the impact of the TFR on SDT trends in Rwanda. Thus, the decline in the TFR in Rwanda began with the introduction of family planning practices, which now account for 47.5% in 2019. Childbearing with three children for rural women compared to two children in the city, the increase in Divorce and separation caused by the behavior called "Kuza n'ijoro" or "coming at night" similar to cohabitation in developed countries. The decline in remarriage is caused by single mothers behavior who prefer to raise their children rather than remarry. Therefore, the study used probability sampling with (Stratified random sampling) method with a survey questionnaire of 1067 respondents in the 5 Districts (3 in rural areas and two in urban areas), with the target group of women Age between 15-49. The study demonstrated that the age of marriage in rural areas is two years higher than in urban areas. Divorce is more common in urban is with 6.2% with 5.2% in rural areas. However, separation is more common in rural areas than in urban areas, with a lower rate of 3%, due to the higher system called "Kuza n'ijoro" or "come at night", similar to cohabitation in developed countries. The study revealed that more than 85% of divorced people prefer to remain single, which confirms the low remarriage rate. Childbearing has started to decrease, especially for young singles in urban areas, due to the economic situation, with national statistics showing that unemployment in the youth community is still 16% higher. Therefore, the study concluded by confirming the hypothesis based on the results of the TFR indicators such as marriage, remarriage, divorce, separation, divorce, Kuza n'ijoro, childbearing] and abortion. The study consists of four sections, an introduction and background, a review of the literature, a description of the data and methodology, an analysis of the data, discussion results and a conclusion.

Keywords: Kuza n'ijoro, Rwanda, second demographic transition (SDT), total fertility rate (TFR)

Procedia PDF Downloads 170
90 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 264
89 Land Rights, Policy and Cultural Identity in Uganda: Case of the Basongora Community

Authors: Edith Kamakune

Abstract:

As much as Indigenous rights are presumed to be part of the broad human rights regime, members of the indigenous communities have continually suffered violations, exclusions, and threat. There are a number of steps taken from the international community in trying to bridge the gap, and this has been through the inclusion of provisions as well as the passing of conventions and declarations with specific reference to the rights of indigenous peoples. Some examples of indigenous people include theSiberian Yupik of St Lawrence Island; the Ute of Utah; the Cree of Alberta, and the Xosa andKhoiKhoi of Southern Africa. Uganda’s wide cultural heritage has played a key role in the failure to pay special attention to the needs of the rights of indigenous peoples. The 1995 Constitution and the Land Act of 1998 provide for abstract land rights without necessarily paying attention to indigenous communities’ special needs. Basongora are a pastoralist community in Western Uganda whose ancestral land is the present Queen Elizabeth National Park of Western Uganda, Virunga National Park of Eastern Democratic Republic of Congo, and the small percentage of the low lands under the Rwenzori Mountains. Their values and livelihood are embedded in their strong attachment to the land, and this has been at stake for the last about 90 Years. This research was aimed atinvestigating the relationship between land rights and the right to cultural identity among indigenous communities, looking at the policy available on land and culture, and whether the policies are sensitive of the specific issues of vulnerable ethnic groups; and largely the effect of land on the right to cultural identity. The research was guided by three objectives: to examine and contextualize the concept of land rights among the Basongora community; to assess the policy frame work available for the protection of the Basongora community; to investigate the forms of vulnerability of the Basongora community. Quantitative and qualitative methods were used. a case of Kaseseand Kampala Districts were purposefully selected .138 people were recruited through random and nonrandom techniques to participate in the study, and these were 70 questionnaire respondents; 20 face to face interviews respondents; 5 key informants, and 43 participants in focus group discussions; The study established that Land is communally held and used and thatit continues to be a central source of livelihood for the Basongora; land rights are important in multiplication of herds; preservation, development, and promotion of culture and language. Research found gaps in the policy framework since the policies are concerned with tenure issues and the general provisions areambiguous. Oftenly, the Basongora are not called upon to participate in decision making processes, even on issues that affect them. The research findings call forauthorities to allow Basongora to access Queen Elizabeth National Park land for pasture during particular seasons of the year, especially during the dry seasons; land use policy; need for a clear alignment of the description of indigenous communitiesunder the constitution (Uganda, 1995) to the international definition.

Keywords: cultural identity, land rights, protection, uganda

Procedia PDF Downloads 157
88 Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia

Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas

Abstract:

The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Keywords: EEG, ERP, native and foreign languages comprehension, Siberian inhabitants

Procedia PDF Downloads 562
87 Nutrition Support Practices and Nutritional Status of Adolescents Receiving Antiretroviral Therapy in Selected Hospitals in Ethiopia

Authors: Meless Gebrie Bore, Lin Perry, Xiaoyue Xu, Andargachew Kassa, Marilyn Cruickshank

Abstract:

Background: Adolescents living with HIV (ALHIV) in Ethiopia face significant health challenges, particularly related to nutrition, which is essential for optimizing antiretroviral therapy (ART) outcomes. This population is vulnerable to nutritional deficiencies due to increased energy demands and the adverse effects of HIV, alongside rapid growth and low socio-economic status. Despite advances in ART, research on nutritional care for ALHIV in Ethiopia is limited. Integrated nutritional interventions are critical for improving health outcomes, yet comprehensive guidance is lacking. This study aimed to evaluate healthcare workers' practices in ART clinics, assess the nutritional status of ALHIV, and provide recommendations for enhancing nutritional care. Method: Cross-sectional surveys were conducted, recruiting 44 healthcare professionals and 384 ALHIV across ten public hospitals in Addis Ababa and Oromia regions. Participants were selected using purposive sampling for healthcare workers and proportionate random sampling for ALHIV engaged in ART services. Data was collected using a pre-tested structured questionnaire with quantitative and qualitative components facilitated by trained healthcare workers through the Kobo Toolbox program. Results: Findings revealed that while most healthcare workers conducted basic nutritional assessments, more sensitive methods were rarely used. Only 36.4% assessed dietary intake and 27.3% evaluated food security. Nutrition counseling was limited, with only 38.6% providing such services regularly. Health Care worker participants expressed dissatisfaction with the integration of nutrition services due to a lack of training and resources. Nutritional assessments revealed that 24.2% of ALHIV were classified as thin, 21.7% as stunted, and 34.9% as malnourished based on mid-upper arm circumference, with 19.4% experiencing severe acute malnutrition. These results highlight the urgent need and opportunities to improve nutritional support tailored to ALHIV-specific needs. Conclusion and Recommendations: Study findings identified evidence of substantial nutritional deficits and critical gaps in nutritional care for ALHIV in Ethiopian ART clinics. While basic assessment and counseling were generally practiced, limited use of more sensitive methods and inadequate integration of nutrition services hindered care effectiveness. To improve health outcomes, it is essential to enhance training for healthcare workers, develop standardized nutrition guidelines, and allocate resources effectively. Conducting further research with large, diverse samples and integrating comprehensive nutritional care alongside ART services will enable better matching of the nutritional needs of this vulnerable population.

Keywords: adolescents living with HIV(ALHIV), antiretroviral therapy (ART), HIV, Ethiopia, malnutrition, nutritional support, stunting, thinness

Procedia PDF Downloads 16
86 Combating the Practice of Open Defecation through Appropriate Communication Strategies in Rural India

Authors: Santiagomani Alex Parimalam

Abstract:

Lack of awareness on the consequences of open defecation and myths and misconceptions related to use of toilets have led to the continued practice of open defecation in India. Government of India initiated a multi-pronged intensive communication campaign against the practice of open defecation in the last few years. The primary vision of this communication campaign was to provide increased demand for toilets and to ensure that all have access to safe sanitation. The campaign strategy included the use of mass media, group and folk media, and interpersonal communication to expedite achieving its objectives. The campaign included the use of various media such as posters, wall writings, slides in cinema theatres, kiosks, pamphlets, newsletters, flip charts and folk media to bring behavioural changes in the communities. The author did a concurrent monitoring and process documentation of the campaigns initiated by the state of Tamilnandu, India between 2013 and 2016 commissioned by UNICEF India. The study was carried out to assess the effectiveness of the communication campaigns in combating the practice of open defecation and promote construction of toilets in the state of Tamilnadu, India. Initial findings revealed the gap in understanding the audience and the use of appropriate media. The first phase of the communication campaign by name as Chi Chi Chollapa (bringing shame concept) also revealed that use of interpersonal communication, group and community media were the most effective strategy in reaching the rural masses. The failure of various other media used especially the print media (poster, handbills, newsletter, kiosks) provides insights as to where the government needs to invest its resources in bringing health-seeking behaviour in the community. The findings shared with the government enabled to strengthen the campaign resulting in improved response. Taking cues from the study, the government understood the potency of the women, school children, youth and community leaders as the effective carriers of the message. The government narrowed down its focus and invested on the voluntary workers (village poverty reduction committee workers VPRCs) in the community. The effectiveness of interpersonal communication and peer education by the credible community worker threw light on the need for localising the content and communicator. From this study, we could derive that only community and group media are preferred by the people in the rural community. Children, youth, women, and credible local leaders are proved to be ambassadors in behaviour change communication. This study discloses the lacunae involved in the communication campaign and points out that the state should have carried out a proper communication need analysis and piloting. The study used a survey method with random sampling. The study used both quantitative and qualitative tools such as interview schedules, in-depth interviews, and focus group discussions in rural areas of Tamilnadu in phases. The findings of the study would provide directions to future campaigns to any campaign concerning health and rural development.

Keywords: appropriate, communication, combating, open defecation

Procedia PDF Downloads 127
85 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures

Authors: Francesca Marsili

Abstract:

The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.

Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures

Procedia PDF Downloads 339
84 Assessing the Plant Diversity's Quality, Threats and Opportunities for the Support of Sustainable City Development of the City Raipur, India

Authors: Katharina Lapin, Debashis Sanyal

Abstract:

Worldwide urban areas are growing. Urbanization has a great impact on social and economic development and ecosystem services. This global trend of urbanization also has significant impact on habitat and biodiversity. The impact of urbanization on the biodiversity of cities in Europe and North America is well studied, while there is a lack of data from cities in currently fast growing urban areas. Indian cities are expanding. The scientific community and the governmental authorities are facing the ongoing urbanization process as an opportunity for the environment. This case study supports the evaluation of urban biodiversity of the city Raipur in the North-West of India. The aim of this study is to assess the overview of the environmental and ecological implications of urbanization. The collected data and analysis was used to discuss the challenges for the sustainable city development. Vascular plants were chosen as an appropriate indicator for the assessment of local biodiversity changes. On the one hand, the vegetation cover is sensible to anthropogenic influence, and in the other hand, the local species composition is comparable to changes at the regional and national scale, using the plant index of India. Further information of abiotic situation can be gathered with the determination of indicator species. In order to calculate the influence of urbanization on the native plant diversity, the Shannon diversity index H´ was chosen. The Pielou`s pooled quadrate method was used for estimating diversity when a random sample is not expected. It was used to calculate the Pilou´s index of evenness. The estimated species coverage was used for calculating the H´ and J. Pearson correlation was performed to test the relationship between urbanization pattern and plant diversity. Further, a SWOT analysis was used in for analyzing internal and external factors impinging on a decision making process. The city of Raipur (21.25°N 81.63°E) has a population of 1,010,087 inhabitants living in an urban area of 226km², in the district of the Indian state of Chhattisgarh. Within the last decade, the urban area of Raipur increased. The results show that various novel ecosystems exist in the urban area of Raipur. The high amount of native flora is mainly to find at the shore of urban lakes and along the river Karun. These areas of high Biodiversity Index are to protect as urban biodiversity hot spots. The governmental authorities are well informed about the environmental challenges for the sustainable development of the city. Together with the scientific community of the Technical University of Raipur many engineering solutions are discussed for implementation of the future. The case study helped to point out the importance environmental measures that support the ecosystem services of green infrastructure. The fast process of urbanization is difficult to control. Uncontrolled creation of urban housing leads to difficulties in unsustainable use of natural resources. This is the major threat for the urban biodiversity.

Keywords: India, novel ecosystems, plant diversity, urban ecology

Procedia PDF Downloads 277
83 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 275
82 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 81