Search results for: optical polarization feedback
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3203

Search results for: optical polarization feedback

503 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept

Authors: Ahmed El Naggar, Homyan Saleh

Abstract:

Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.

Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy

Procedia PDF Downloads 58
502 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 342
501 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy

Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu

Abstract:

The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.

Keywords: composites, graphene, hydrothermal, renewable energy

Procedia PDF Downloads 474
500 Adaptive Training Methods Designed to Improve a Shorter Resident Curriculum in Obstetrics and Gynecology

Authors: Philippe Judlin, Olivier Morel

Abstract:

Background: In France, the resident curriculum (RC) in Obstetrics and Gynecology (OBGYN) takes five years. In the course of the last 15 years, this RC has undergone major changes, characterized mainly by successive reductions of work hours. The program used to comprise long and frequent shifts, huge workload, poor supervision and erratic theoretical teaching. A decade ago, the French Ministry of Heath recommended a limitation of shift duration up to 24 hours and a minimum of 11 hours off duty between shifts. Last year, in order to comply with European Union directives, new recommendations have further limited residents’ work hours to 48 hours per week. Methods: Assessment of the residency program adjustments recently made to accommodate the recommendations while improving the training quality in resorting to new methods. Results: The challenge facing program directors was to provide an all-encompassing curriculum to OBGYN residents despite fewer work hours. Program has been dramatically redesigned, and several measures have been put in place: -The resident rotation system has been redesigned. Residents used to make 6-month rotations between 10-12 Departments of OBGYN or Surgery. Fewer Departments, those providing the best teaching, have been kept in the new RC. -Extensive inhouse supervision has been implemented for all kinds of clinical activities. Effectual supervision of residents has proved to be an effective tool to improve the quality of training. -The tutorship system, with academic members individually overseeing residents during their curriculum, has been perfected. It allows a better follow-up of residents’ progresses during the 5-year program. -The set up of an extensive program of lectures encompassing all maters in Obstetrics & Gynecology. These mandatory lectures are available online in a dedicated website. Therefore, face-to-face lectures have been limited in order to fit in the 48-hour limit. -The use of simulation has been significantly increased in obstetrics, materno-fetal medicine and surgery (stressing especially laparoscopic training). -Residents’ feedback has been taken into account in the setup of the new RC. Conclusion: This extensive overhaul of the Obstetrics and Gynecology RC has been in place since last year only. Nevertheless, the new program seems to adequately take into account the new recommendations while providing a better and more consistent teaching to the OBGYN residents.

Keywords: education, laparoscopy, residency, simulation

Procedia PDF Downloads 169
499 Evaluating and Supporting Student Engagement in Online Learning

Authors: Maria Hopkins

Abstract:

Research on student engagement is founded on a desire to improve the quality of online instruction in both course design and delivery. A high level of student engagement is associated with a wide range of educational practices including purposeful student-faculty contact, peer to peer contact, active and collaborative learning, and positive factors such as student satisfaction, persistence, achievement, and learning. By encouraging student engagement, institutions of higher education can have a positive impact on student success that leads to retention and degree completion. The current research presents the results of an online student engagement survey which support faculty teaching practices to maximize the learning experience for online students. The ‘Indicators of Engaged Learning Online’ provide a framework that measures level of student engagement. Social constructivism and collaborative learning form the theoretical basis of the framework. Social constructivist pedagogy acknowledges the social nature of knowledge and its creation in the minds of individual learners. Some important themes that flow from social constructivism involve the importance of collaboration among instructors and students, active learning vs passive consumption of information, a learning environment that is learner and learning centered, which promotes multiple perspectives, and the use of social tools in the online environment to construct knowledge. The results of the survey indicated themes that emphasized the importance of: Interaction among peers and faculty (collaboration); Timely feedback on assignment/assessments; Faculty participation and visibility; Relevance and real-world application (in terms of assignments, activities, and assessments); and Motivation/interest (the need for faculty to motivate students especially those that may not have an interest in the coursework per se). The qualitative aspect of this student engagement study revealed what instructors did well that made students feel engaged in the course, but also what instructors did not do well, which could inform recommendations to faculty when expectations for teaching a course are reviewed. Furthermore, this research provides evidence for the connection between higher student engagement and persistence and retention in online programs, which supports our rationale for encouraging student engagement, especially in the online environment because attrition rates are higher than in the face-to-face environment.

Keywords: instructional design, learning effectiveness, online learning, student engagement

Procedia PDF Downloads 273
498 The Regulation of Reputational Information in the Sharing Economy

Authors: Emre Bayamlıoğlu

Abstract:

This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.

Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy

Procedia PDF Downloads 445
497 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules

Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye

Abstract:

Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.

Keywords: dendritic, electroplating, gold, template

Procedia PDF Downloads 165
496 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: daily light integral, plant design, urban open space

Procedia PDF Downloads 492
495 Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products

Authors: Lorenzo Cocola, Massimo Fedel, Dragiša Savić, Bojana Danilović, Luca Poletto

Abstract:

An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere.

Keywords: TDLAS, carbon dioxide, cups, headspace, measurement

Procedia PDF Downloads 293
494 Nursing Students’ Opinions about Theoretical Lessons and Clinical Area: A Survey in a Nursing Department

Authors: Ergin Toros, Manar Aslan

Abstract:

This study was planned as a descriptive study in order to learn the opinions of the students who are studying in nursing undergraduate program about their theoretical/practical lessons and departments. The education in the undergraduate nursing programs has great importance because it contains the knowledge and skills to prepare student nurses to the clinic in the future. In order to provide quality-nursing services in the future, the quality of nursing education should be measured, and opinions of student nurses about education should be taken. The research population was composed of students educated in a university with 1-4 years of theoretical and clinical education (N=550), and the sample was composed of 460 students that accepted to take part in the study. It was reached to 83.6% of target population. Data collected through a survey developed by the researchers. Survey consists of 48 questions about sociodemographic characteristics (9 questions), theoretical courses (9 questions), laboratory applications (7 questions), clinical education (14 questions) and services provided by the faculty (9 questions). It was determined that 83.3% of the nursing students found the nursing profession to be suitable for them, 53% of them selected nursing because of easy job opportunity, and 48.9% of them stayed in state dormitory. Regarding the theoretical courses, 84.6% of the students were determined to agree that the question ‘Course schedule is prepared before the course and published on the university web page.’ 28.7% of them were determined to do not agree that the question ‘Feedback is given to students about the assignments they prepare.’. It has been determined that 41,5% of the students agreed that ‘The time allocated to laboratory applications is sufficient.’ Students said that physical conditions in laboratory (41,5%), and the materials used are insufficient (44.6%), and ‘The number of students in the group is not appropriate for laboratory applications.’ (45.2%). 71.3% of the students think that the nurses view in the clinics the students as a tool to remove the workload, 40.7% of them reported that nurses in the clinic area did not help through the purposes of the course, 39.6% of them said that nurses' communication with students is not good. 37.8% of students stated that nurses did not provide orientation to students, 37.2% of them think that nurses are not role models for students. 53.7% of the students stated that the incentive and support for the student exchange program were insufficient., %48 of the students think that career planning services, %47.2 security services,%45.4 the advisor spent time with students are not enough. It has been determined that nursing students are most disturbed by the approach of the nurses in the clinical area within the undergraduate education program. The clinical area education which is considered as an integral part of nursing education is important and affect to student satisfaction.

Keywords: nursing education, student, clinical area, opinion

Procedia PDF Downloads 159
493 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing

Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa

Abstract:

CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.

Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology

Procedia PDF Downloads 77
492 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor

Procedia PDF Downloads 347
491 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 341
490 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast

Authors: Scott Nielsen, Luca Longanesi, Chris Chuck

Abstract:

Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.

Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis

Procedia PDF Downloads 174
489 Communities as a Source of Evidence: A Case of Advocating for Improved Human Resources for Health in Uganda

Authors: Asinguza P. Allan

Abstract:

The Advocacy for Better Health aims to equip citizens with enabling environment and systems to effectively advocate for strong action plans to improve health services. This is because the 2020 Government target for Uganda to transform into a middle income country will be achieved if investment is made in keeping the population healthy and productive. Citizen participation as an important foundation for change has been emphasized to gather data through participatory rural appraisal and inform evidence-based advocacy for recruitment and motivation of human resources. Citizens conduct problem ranking during advocacy forums on staffing levels and health worker absenteeism. Citizens prioritised inadequate number of midwives and absenteeism. On triangulation, health worker to population ratio in Uganda remains at 0.25/1,000 which is far below the World Health Organization (WHO) threshold of 2.3/1,000. Working with IntraHealth, the project advocated for recruitment of critical skilled staff (doctors and midwives) and scale up health workers motivation strategy to reduce Uganda’s Neonatal Mortality Rate of 22/1,000 and Maternal Mortality Ratio of 320/100,000. Government has committed to increase staffing to 80% by 2018 (10 districts have passed ordinances and revived use of duty rosters to address health worker absenteeism. On the other hand, the better health advocacy debate has been elevated with need to increase health sector budget allocations from 8% to 10%. The project has learnt that building a body of evidence from citizens enhances the advocacy agenda. Communities will further monitor government commitments to reduce Neonatal Mortality Rate and Maternal Mortality Ratio. The project has learnt that interface meeting between duty bearers and the community allows for immediate feedback and the process is a strong instrument for empowerment. It facilitates monitoring and performance evaluation of services, projects and government administrative units (like district assemblies) by the community members themselves. This, in turn, makes the human resources in health to be accountable, transparent and responsive to communities where they work. This, in turn, promotes human resource performance.

Keywords: advocacy, empowerment, evidence, human resources

Procedia PDF Downloads 196
488 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Authors: Madiha El Awamie, Catherine Rees

Abstract:

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative

Procedia PDF Downloads 321
487 Photophysical Study of Pyrene Butyric Acid in Aqueous Ionic Liquid

Authors: Pratap K. Chhotaray, Jitendriya Swain, Ashok Mishra, Ramesh L. Gardas

Abstract:

Ionic liquids (ILs) are molten salts, consist predominantly of ions and found to be liquid below 100°C. The unparalleled growing interest in ILs is based upon their never ending design flexibility. The use of ILs as a co-solvent in binary as well as a ternary mixture with molecular solvents multifold it’s utility. Since polarity is one of the most widely applied solvent concepts which represents simple and straightforward means for characterizing and ranking the solvent media, its study for a binary mixture of ILs is crucial for its widespread application and development. The primary approach to the assessment of solution phase intermolecular interactions, which generally occurs on the picosecond to nanosecond time scales, is to exploit the optical response of photophysical probe. Pyrene butyric acid (PBA) is used as fluorescence probe due to its high quantum yield, longer lifetime and high solvent polarity dependence of fluorescence spectra. Propylammonium formate (PAF) is the IL used for this study. Both the UV-absorbance spectra and steady state fluorescence intensity study of PBA in different concentration of aqueous PAF, reveals that with an increase in PAF concentration, both the absorbance and fluorescence intensity increases which indicate the progressive solubilisation of PBA. Whereas, near about 50% of IL concentration, all of the PBA molecules get solubilised as there are no changes in the absorbance and fluorescence intensity. Furthermore, the ratio II/IV, where the band II corresponds to the transition from S1 (ν = 0) to S0 (ν = 0), and the band IV corresponds to transition from S1 (ν = 0) to S0 (ν = 2) of PBA, indicates that the addition of water into PAF increases the polarity of the medium. Time domain lifetime study shows an increase in lifetime of PBA towards the higher concentration of PAF. It can be attributed to the decrease in non-radiative rate constant at higher PAF concentration as the viscosity is higher. The monoexponential decay suggests that homogeneity of solvation environment whereas the uneven width at full width at half maximum (FWHM) indicates there might exist some heterogeneity around the fluorophores even in the water-IL mixed solvents.

Keywords: fluorescence, ionic liquid, lifetime, polarity, pyrene butyric acid

Procedia PDF Downloads 438
486 Establishing a Communication Framework in Response to the COVID-19 Pandemic in a Tertiary Government Hospital in the Philippines

Authors: Nicole Marella G. Tan, Al Joseph R. Molina, Raisa Celine R. Rosete, Soraya Elisse E. Escandor, Blythe N. Ke, Veronica Marie E. Ramos, Apolinario Ericson B. Berberabe, Jose Jonas D. del Rosario, Regina Pascua-Berba, Eileen Liesl A. Cubillan, Winlove P. Mojica

Abstract:

Emergency risk and health communications play a vital role in any pandemic response. However, the Philippine General Hospital (PGH) lacked a system of information delivery that could effectively fulfill the hospital’s communication needs as a COVID-19 referral hospital. This study aimed to describe the establishment of a communication framework for information dissemination within a tertiary government hospital during the COVID-19 pandemic and evaluated the perceived usefulness of its outputs. This is a mixed quantitative-qualitative study with two phases. Phase 1 documented the formation and responsibilities of the Information Education Communication (IEC) Committee. Phase 2 evaluated its output and outcomes through a hospital-wide survey of 528 healthcare workers (HCWs) using a pre-tested questionnaire. In-depth explanations were obtained from five focused group discussions (FGD) amongst various HCW subgroups. Descriptive analysis was done using STATA 16 while qualitative data were synthesized thematically. Communication practices in PGH were loosely structured at the beginning of the pandemic until the establishment of the IEC Committee. The IEC Committee was well-represented by concerned stakeholders. Nine types of infographics tackled different aspects of the hospital’s health operations after thorough inputs from concerned offices. Internal and external feedback mechanisms ensured accurate infographics. Majority of the survey respondents (98.67%) perceived these as useful in their work or daily lives. FGD participants cited the relevance of infographics to their occupations, suggested improvements, and hoped that these efforts would be continued in the future. Sustainability and comprehensive reach were the main concerns in this undertaking. The PGH COVID-19 IEC framework was developed through trial and testing as there were no existing formal structures to communicate health risks and to properly direct the HCWs in the chaotic time of a pandemic. It is a continuously evolving framework which is perceived as useful by HCWs and is hoped to be sustained in the future.

Keywords: COVID-19, pandemic, health communication, infographics, social media

Procedia PDF Downloads 103
485 Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Mahmoud A. Adam, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features.

Keywords: architectural calcareous stone monuments, coating, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 235
484 Identifying the Challenges and Opportunities of Using Lesson Study in English Language Teaching Through the Lenses of In-Service Ecuadorian EFL Teachers

Authors: Cherres Sara, Cajas Diego

Abstract:

This paper explores how EFL teachers understand the process of Lesson Study in Ecuadorian schools and the challenges and opportunities that it brings to the improvement of their teaching practice. Using a narrative research methodology, this study presents the results of the application of the four steps of Lesson Study carried out by seven teachers in four different schools located in the Southern part of Ecuador during four months. Before starting the implementation of the lesson study, 30 teachers were trained on this model. This training was opened to EFL teachers working in public and private schools without any charge. The criteria to select these teachers were first, to be minimum a one-year in-service teacher, second, to have a b2 level of English, and third, to be able to commit to follow the course guidelines. After the course, seven teachers decided to continue with the implementation of the Lesson Study in their respective institutions. During the implementation of the Lesson Study, data was collected through observations, in-depth interviews and teachers’ planning meetings; and analyzed using a thematic analysis. The results of this study are presented using the lenses of seven EFL teachers that explained the challenges and opportunities that the implementation of Lesson Study conveyed. The challenges identified were the limited capacity of reflection and recognition of the activities that required improvement after the class, limited capacity to provide truthful peer feedback, teachers wrong notions about their performance in their classes, difficulties to follow a collaborative lesson plan; and, the disconnection between class activities and the class content. The opportunities identified were teachers’ predisposition to collaborate, teachers’ disposition to attend professional development courses, their commitment to work extra hours in planning meetings, their openness and their desired to be observed in their classes; and, their willingness to share class materials and knowledge. On the other hand, the results show that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations. The authors concluded that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations for example: excessive institutional paperwork and activities that are not connected to the development of students’ competences.

Keywords: ELT, lesson study, teachers’ professional development, teachers’ collaboration

Procedia PDF Downloads 44
483 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 203
482 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril

Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro

Abstract:

Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.

Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics

Procedia PDF Downloads 63
481 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water

Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu

Abstract:

Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.

Keywords: biotoxin, photonic, ring resonator, sensor

Procedia PDF Downloads 94
480 Understanding Complexity at Pre-Construction Stage in Project Planning of Construction Projects

Authors: Mehran Barani Shikhrobat, Roger Flanagan

Abstract:

The construction planning and scheduling based on using the current tools and techniques is resulted deterministic in nature (Gantt chart, CPM) or applying a very little probability of completion (PERT) for each task. However, every project embodies assumptions and influences and should start with a complete set of clearly defined goals and constraints that remain constant throughout the duration of the project. Construction planners continue to apply the traditional methods and tools of “hard” project management that were developed for “ideal projects,” neglecting the potential influence of complexity on the design and construction process. The aim of this research is to investigate the emergence and growth of complexity in project planning and to provide a model to consider the influence of complexity on the total project duration at the post-contract award pre-construction stage of a project. The literature review showed that complexity originates from different sources of environment, technical, and workflow interactions. They can be divided into two categories of complexity factors, first, project tasks, and second, project organisation management. Project tasks may originate from performance, lack of resources, or environmental changes for a specific task. Complexity factors that relate to organisation and management refer to workflow and interdependence of different parts. The literature review highlighted the ineffectiveness of traditional tools and techniques in planning for complexity. However, this research focus on understanding the fundamental causes of the complexity of construction projects were investigated through a questionnaire with industry experts. The results were used to develop a model that considers the core complexity factors and their interactions. System dynamics were used to investigate the model to consider the influence of complexity on project planning. Feedback from experts revealed 20 major complexity factors that impact project planning. The factors are divided into five categories known as core complexity factors. To understand the weight of each factor in comparison, the Analytical Hierarchy Process (AHP) analysis method is used. The comparison showed that externalities are ranked as the biggest influence across the complexity factors. The research underlines that there are many internal and external factors that impact project activities and the project overall. This research shows the importance of considering the influence of complexity on the project master plan undertaken at the post-contract award pre-construction phase of a project.

Keywords: project planning, project complexity measurement, planning uncertainty management, project risk management, strategic project scheduling

Procedia PDF Downloads 76
479 Evaluation of the Surveillance System for Rift Valley Fever in Ruminants in Mauritania, 2019

Authors: Mohamed El Kory Yacoub, Ahmed Bezeid El Mamy Beyatt, Djibril Barry, Yanogo Pauline, Nicolas Meda

Abstract:

Introduction: Rift Valley Fever is a zoonotic arbovirosis that severely affects ruminants, as well as humans. It causes abortions in pregnant females and deaths in young animals. The disease occurs during heavy rains followed by large numbers of mosquito vectors. The objective of this work is to evaluate the surveillance system for Rift Valley Fever. Methods: We conducted an evaluation of the Rift Valley Fiver surveillance system. Data were collected from the analysis of the national database of the Mauritanian Network of Animal Disease Epidemiological Surveillance at the Ministry of Rural Development, of RVF cases notified from the whole national territory, of questionnaires and interviews with all persons involved in RVF surveillance at the central level. The quality of the system was assessed by analyzing the quantitative attributes defined by the Centers for Disease Control and Prevention. Results: In 2019, 443 cases of RVF were notified by the surveillance system, of which 36 were positive. Among the notified cases of Rift Valley Fever, the 0- to the 3-year-old age group of small ruminants was the most represented with 49.21% of cases, followed by 33.33%, which was recorded in large ruminants in the 0 to 7-year-old age group, 11.11% of cases were older than seven years. The completeness of the data varied between 14.2% (age) and 100% (species). Most positive cases were recorded between October and November 2019 in seven different regions. Attribute analysis showed that 87% of the respondents were able to use the case definition well, and 78.8% said they were familiar with the reporting and feedback loop of the Rift Valley Fever data. 90.3% of the respondents found it easy, while 95% of them responded that it was easy for them to transmit their data to the next level. Conclusions: The epidemiological surveillance system for Rift Valley Fever in Mauritania is simple and representative. However, data quality, stability, and responsiveness are average, as the diagnosis of the disease requires laboratory confirmation and the average delay for this confirmation is long (13 days). Consequently, the lack of completeness of the recorded data and of description of cases in terms of time-place-animal, associated with the delay between the stages of the surveillance system can make prevention, early detection of epidemics, and the initiation of measures for an adequate response difficult.

Keywords: evaluation, epidemiological surveillance system, rift valley fever, mauritania, ruminants

Procedia PDF Downloads 125
478 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification

Authors: Neway Adele, Adey Feleke

Abstract:

Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.

Keywords: coagulation efficiency, extraction, natural coagulant, protein extract

Procedia PDF Downloads 42
477 Train-The-Trainer in Neonatal Resuscitation in Rural Uganda: A Model for Sustainability and the Barriers Faced

Authors: Emilia K. H. Danielsson-Waters, Malaz Elsaddig, Kevin Jones

Abstract:

Unfortunately, it is well known that neonatal deaths are a common and potentially preventable occurrence across the world. Neonatal resuscitation is a simple and inexpensive intervention that can effectively reduce this rate, and can be taught and implemented globally. This project is a follow-on from one in 2012, which found that neonatal resuscitation simulation was valuable for education, but would be better improved by being delivered by local staff. Methods: This study involved auditing the neonatal admission and death records within a rural Ugandan hospital, alongside implementing a Train-The-Trainer teaching scheme to teach Neonatal Resuscitation. One local doctor was trained for simulating neonatal resuscitation, whom subsequently taught an additional 14 staff members in one-afternoon session. Participants were asked to complete questionnaires to assess their knowledge and confidence pre- and post-simulation, and a survey to identify barriers and drivers to simulation. Results: The results found that the neonatal mortality rate in this hospital was 25% between July 2016- July 2017, with birth asphyxia, prematurity and sepsis being the most common causes. Barriers to simulation that were identified predominantly included a lack of time, facilities and opportunity, yet all members stated simulation was beneficial for improving skills and confidence. The simulation session received incredibly positive qualitative feedback, and also a 0.58-point increase in knowledge (p=0.197) and 0.73-point increase in confidence (0.079). Conclusion: This research shows that it is possible to create a teaching scheme in a rural hospital, however, many barriers are in place for its sustainability, and a larger sample size with a more sensitive scale is required to achieve statistical significance. This is undeniably important, because teaching neonatal resuscitation can have a direct impact on neonatal mortality. Subsequently, recommendations include that efforts should be put in place to create a sustainable training scheme, for example, by employing a resuscitation officer. Moreover, neonatal resuscitation teaching should be conducted more frequently in hospitals, and conducted in a wider geographical context, including within the community, in order to achieve its full effect.

Keywords: neonatal resuscitation, sustainable medical education, train-the-trainer, Uganda

Procedia PDF Downloads 123
476 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone

Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma

Abstract:

Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.

Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes

Procedia PDF Downloads 143
475 Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge

Authors: I. Kamika, S. Azizi, M. Tekere

Abstract:

Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples.

Keywords: bacterial community, next generation, cerium oxide, wastewater, activated sludge, nanoparticles, nanotechnology

Procedia PDF Downloads 189
474 Conversational Assistive Technology of Visually Impaired Person for Social Interaction

Authors: Komal Ghafoor, Tauqir Ahmad, Murtaza Hanif, Hira Zaheer

Abstract:

Assistive technology has been developed to support visually impaired people in their social interactions. Conversation assistive technology is designed to enhance communication skills, facilitate social interaction, and improve the quality of life of visually impaired individuals. This technology includes speech recognition, text-to-speech features, and other communication devices that enable users to communicate with others in real time. The technology uses natural language processing and machine learning algorithms to analyze spoken language and provide appropriate responses. It also includes features such as voice commands and audio feedback to provide users with a more immersive experience. These technologies have been shown to increase the confidence and independence of visually impaired individuals in social situations and have the potential to improve their social skills and relationships with others. Overall, conversation-assistive technology is a promising tool for empowering visually impaired people and improving their social interactions. One of the key benefits of conversation-assistive technology is that it allows visually impaired individuals to overcome communication barriers that they may face in social situations. It can help them to communicate more effectively with friends, family, and colleagues, as well as strangers in public spaces. By providing a more seamless and natural way to communicate, this technology can help to reduce feelings of isolation and improve overall quality of life. The main objective of this research is to give blind users the capability to move around in unfamiliar environments through a user-friendly device by face, object, and activity recognition system. This model evaluates the accuracy of activity recognition. This device captures the front view of the blind, detects the objects, recognizes the activities, and answers the blind query. It is implemented using the front view of the camera. The local dataset is collected that includes different 1st-person human activities. The results obtained are the identification of the activities that the VGG-16 model was trained on, where Hugging, Shaking Hands, Talking, Walking, Waving video, etc.

Keywords: dataset, visually impaired person, natural language process, human activity recognition

Procedia PDF Downloads 36