Search results for: minimum data set
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26529

Search results for: minimum data set

23829 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 218
23828 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 391
23827 On Estimating the Low Income Proportion with Several Auxiliary Variables

Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández

Abstract:

Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.

Keywords: inclusion probability, poverty, poverty line, survey sampling

Procedia PDF Downloads 458
23826 TessPy – Spatial Tessellation Made Easy

Authors: Jonas Hamann, Siavash Saki, Tobias Hagen

Abstract:

Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.

Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies

Procedia PDF Downloads 128
23825 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir V. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics

Procedia PDF Downloads 382
23824 Analysis of Lead Time Delays in Supply Chain: A Case Study

Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry

Abstract:

Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.

Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis

Procedia PDF Downloads 731
23823 A Unified Approach for Digital Forensics Analysis

Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles

Abstract:

Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.

Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool

Procedia PDF Downloads 196
23822 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 172
23821 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis

Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare

Abstract:

The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.

Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test

Procedia PDF Downloads 402
23820 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models

Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana

Abstract:

The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.

Keywords: electricity demand forecasting, load shedding, demand side management, data science

Procedia PDF Downloads 61
23819 Coastal Modelling Studies for Jumeirah First Beach Stabilization

Authors: Zongyan Yang, Gagan K. Jena, Sankar B. Karanam, Noora M. A. Hokal

Abstract:

Jumeirah First beach, a segment of coastline of length 1.5 km, is one of the popular public beaches in Dubai, UAE. The stability of the beach has been affected by several coastal developmental projects, including The World, Island 2 and La Mer. A comprehensive stabilization scheme comprising of two composite groynes (of lengths 90 m and 125m), modification to the northern breakwater of Jumeirah Fishing Harbour and beach re-nourishment was implemented by Dubai Municipality in 2012. However, the performance of the implemented stabilization scheme has been compromised by La Mer project (built in 2016), which modified the wave climate at the Jumeirah First beach. The objective of the coastal modelling studies is to establish design basis for further beach stabilization scheme(s). Comprehensive coastal modelling studies had been conducted to establish the nearshore wave climate, equilibrium beach orientations and stable beach plan forms. Based on the outcomes of the modeling studies, recommendation had been made to extend the composite groynes to stabilize the Jumeirah First beach. Wave transformation was performed following an interpolation approach with wave transformation matrixes derived from simulations of a possible range of wave conditions in the region. The Dubai coastal wave model is developed with MIKE21 SW. The offshore wave conditions were determined from PERGOS wave data at 4 offshore locations with consideration of the spatial variation. The lateral boundary conditions corresponding to the offshore conditions, at Dubai/Abu Dhabi and Dubai Sharjah borders, were derived with application of LitDrift 1D wave transformation module. The Dubai coastal wave model was calibrated with wave records at monitoring stations operated by Dubai Municipality. The wave transformation matrix approach was validated with nearshore wave measurement at a Dubai Municipality monitoring station in the vicinity of the Jumeirah First beach. One typical year wave time series was transformed to 7 locations in front of the beach to count for the variation of wave conditions which are affected by adjacent and offshore developments. Equilibrium beach orientations were estimated with application of LitDrift by finding the beach orientations with null annual littoral transport at the 7 selected locations. The littoral transport calculation results were compared with beach erosion/accretion quantities estimated from the beach monitoring program (twice a year including bathymetric and topographical surveys). An innovative integral method was developed to outline the stable beach plan forms from the estimated equilibrium beach orientations, with predetermined minimum beach width. The optimal lengths for the composite groyne extensions were recommended based on the stable beach plan forms.

Keywords: composite groyne, equilibrium beach orientation, stable beach plan form, wave transformation matrix

Procedia PDF Downloads 263
23818 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: corporate governance, stock price, performance, panel data analysis

Procedia PDF Downloads 393
23817 New Variational Approach for Contrast Enhancement of Color Image

Authors: Wanhyun Cho, Seongchae Seo, Soonja Kang

Abstract:

In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques.

Keywords: color image, contrast enhancement technique, variational approach, Euler-Lagrang equation, dynamic approximation method, EME measure

Procedia PDF Downloads 450
23816 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia

Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda

Abstract:

This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.

Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers

Procedia PDF Downloads 176
23815 Association of Depression with Physical Inactivity and Time Watching Television: A Cross-Sectional Study with the Brazilian Population PNS, 2013

Authors: Margareth Guimaraes Lima, Marilisa Berti A. Barros, Deborah Carvalho Malta

Abstract:

The relationship between physical activity (PA) and depression has been investigated, in both, observational and clinical studies: PA can integrate the treatments for depression; the physical inactivity (PI) may contribute to increase depression symptoms; and on the other hand, emotional problems can decrease PA. The main of this study was analyze the association among leisure and transportation PI and time watching television (TV) according to depression (minor and major), evaluated with the Patient Health Questionnaire (PHQ-9). The association was also analyzed by gender. This is a cross-sectional study. Data were obtained from the National Health Survey 2013 (PNS), performed with representative sample of the Brazilian adult population, in 2013. The PNS collected information from 60,202 individuals, aged 18 years or more. The independent variable were: leisure time physical inactivity (LTPI), considering inactive or insufficiently actives (categories were linked for analyzes), those who do not performed a minimum of 150 or 74 minutes of moderate or vigorous LTPA, respectively, by week; transportation physical inactivity (TPI), individuals who did not reached 150 minutes, by week, travelling by bicycle or on foot to work or other activities; daily time watching TV > 5 hours. The principal independent variable was depression, identified by PHQ-9. Individuals were classified with major depression, with > 5 symptoms, more than seven days, but one of the symptoms was “depressive mood” or “lack of interest or pleasure”. The others had minor depression. The variables used to adjustment were gender, age, schooling and chronic disease. The prevalence of LTPI, TPI and TV time were estimated according to depression, and differences were tested with Chi-Square test. Adjusted prevalence ratios were estimated using multiple Poisson regression models. The analyzes also had stratification by gender. Mean age of the studied population was 42.9 years old (CI95%:42.6-43.2) and 52.9% were women. 77.5% and 68.1% were inactive or insufficiently active in leisure and transportation, respectively and 13.3% spent time watching TV 5 > hours. 6% and 4.1% of the Brazilian population were diagnosed with minor or major depression. LTPI prevalence was 5% and 9% higher among individuals with minor and major depression, respectively, comparing with no depression. The prevalence of TPI was 7% higher in those with major depression. Considering larger time watching TV, the prevalence was 45% and 74% higher among those with minor and major depression, respectively. Analyzing by gender, the associations were greater in men than women and TPI was note be associated, in women. The study detected the higher prevalence of leisure time physical inactivity and, especially, time spent watching TV, among individuals with major and minor depression, after to adjust for a number of potential confounding factors. TPI was only associated with major disorders and among men. Considering the cross-sectional design of the research, these associations can point out the importance of the mental problems control of the population to increase PA and decrease the sedentary lifestyle; on the other hand, the study highlight the need of interventions by encouraging people with depression, to practice PA, even to transportation.

Keywords: depression, physical activity, PHQ-9, sedentary lifestyle

Procedia PDF Downloads 156
23814 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
23813 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers

Authors: Clare Cunningham

Abstract:

Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.

Keywords: academic writing, students, undergraduates, writing retreat

Procedia PDF Downloads 199
23812 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan

Authors: Mohd Asrul Affedi, Nyi Nyi Naing

Abstract:

Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.

Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS

Procedia PDF Downloads 463
23811 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 76
23810 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 103
23809 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
23808 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 114
23807 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 313
23806 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers

Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes

Abstract:

Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.

Keywords: algae, biocide, biofouling, seawater cooling tower

Procedia PDF Downloads 239
23805 Anti-Bacterial Activity Studies of Derivatives of 6β-Hydroxy Betunolic Acid against Selected Stains of Gram (+) and Gram (-) Bacteria

Authors: S. Jayasinghe, W. G. D. Wickramasingha, V. Karunaratne, D. N. Karunaratne, A. Ekanayake

Abstract:

Multi-drug resistant microbial pathogens are a serious global health problem, and hence, there is an urgent necessity for discovering new drug therapeutics. However, finding alternatives is a one of the biggest challenges faced by the global drug industry due to the spiraling high cost and serious side effects associated with modern medicine. On the other hand, plants and their secondary metabolites can be considered as good sources of scaffolds to provide structurally diverse bioactive compounds as potential therapeutic agents. 6β-hydroxy betunolic acid is a triterpenoid isolated from bark of Schumacheria castaneifolia which is an endemic plant to Sri Lanka which has shown antibacterial activity against both Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus with Minimum Inhibition Concentration (MIC) of 16 µg/ml. The objective of this study was to determine the anti-bacterial activity for the derivatives of 6β- hydroxy betunolic acid against standard strains of Staphylococcus aureus (ATCC 29213 and ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 35218 and ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), carbepenemas produce Kebsiella pneumonia (ATCC BAA 1705) and carbepenemas non produce Kebsiella pneumonia (ATCC BAA 1706) and four stains of clinically isolated methicillin resistance S. aureus and Acinetobacter. Structural analogues of 6β-hydroxy betunolic acid were synthesized by modifying the carbonyl group at C-3 to obtain olefin and oxime, the hydroxyl group at C-6 position to a ketone, the carboxylic acid at C-17 to obtain amide and halo ester and the olefin group at C-20 position to obtain epoxide. Chemical structures of the synthesized analogues were confirmed with spectroscopic data and antibacterial activity was determined through broth micro dilution assay. Results revealed that 6β- hydroxy betunolic acid shows significant antibacterial activity only against the Gram positive strains and it was inactive against all the tested Gram negative strains for the tested concentration range. However, structural modifications into oxime and olefin at C-3, ketone at C-6 and epoxide at C-20 decreased its antibacterial activity against the gram positive organisms and it was totally lost with the both modifications at C-17 into amide and ester. These results concluded that the antibacterial activity of 6β- hydroxy betunolic acid and derivatives is predominantly depending on the cell wall difference of the bacteria and the presence of carboxylic acid at C-17 is highly important for the antibacterial activity against Gram positive organisms.

Keywords: antibacterial activity, 6β- hydroxy betunolic acid, broth micro dilution assay, structure activity relationship

Procedia PDF Downloads 126
23804 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy

Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao

Abstract:

Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.

Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location

Procedia PDF Downloads 484
23803 A Critical Analysis on Gaps Associated with Culture Policy Milieu Governing Traditional Male Circumcision in the Eastern Cape, South Africa

Authors: Thanduxolo Nomngcoyiya, Simon M. Kang’ethe

Abstract:

The paper aimed to critically analyse gaps pertaining to the cultural policy environments governing traditional male circumcision in the Eastern Cape as exemplified by an empirical case study. The original study which this paper is derived from utilized qualitative paradigm; and encompassed 28 participants. It used in-depth one-on-one interviews complemented by focus group discussions and key informants as a method of data collection. It also adopted interview guide as a data collection instrument. The original study was cross-sectional in nature, and the data was audio recorded and transcribed later during the data analysis and coding process. The study data analysis was content thematic analysis and identified the following key major findings on the culture of male circumcision policy: Lack of clarity on culture of male circumcision policy operations; Myths surrounding procedures on culture of male circumcision; Divergent views on cultural policies between government and male circumcision custodians; Unclear cultural policies on selection criteria of practitioners; and Lack of policy enforcement and implementation on transgressors of culture of male circumcision. It recommended: a stringent selection criteria of practitioners; a need to carry out death-free male circumcision; a need for male circumcision stakeholders to work with other culture and tradition-friendly stakeholders.

Keywords: human rights, policy enforcement, traditional male circumcision, traditional surgeons and nurses

Procedia PDF Downloads 297
23802 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 139
23801 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle

Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki

Abstract:

With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.

Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)

Procedia PDF Downloads 209
23800 Modeling Local Warming Trend: An Application of Remote Sensing Technique

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 346