Search results for: miRNA:mRNA target prediction
2388 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity
Authors: Sayed Abdallah Mohamed Dahy
Abstract:
Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt
Procedia PDF Downloads 3812387 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis
Authors: Farzad Khajavi
Abstract:
Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction
Procedia PDF Downloads 2102386 Compilation of Load Spectrum of Loader Drive Axle
Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei
Abstract:
In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.Keywords: load spectrum, axle, torque, rain-flow counting method, extrapolation
Procedia PDF Downloads 3662385 ESL Students’ Engagement with Written Corrective Feedback
Authors: Khaled Karim
Abstract:
Although a large number of studies have examined the effectiveness of written corrective feedback (WCF) in L2 writing, very few studies have investigated students’ attitudes towards the feedback and their perspectives regarding the usefulness of different types of feedback. Using prompted stimulated recall interviews, this study investigated ESL students’ perceptions and attitudes towards the CF they received as well as their preferences and reactions to the corrections. 24 ESL students first received direct (e.g., providing target forms after crossing out erroneous forms) and indirect (e.g., underlining and underline+metalinguistic) CF on four written tasks and then participated in an interview with the researcher. The analysis revealed that both direct and indirect CF were judged to be useful strategies for correction but in different ways. Underline only CF helped them think about the nature and type of the errors they made while metalinguistic CF was useful as it provided clues about the nature and type of the errors. Most participants indicated that indirect correction needed sufficient prior knowledge of the form to be effective. The majority of the students found the combination of underlining with metalinguistic information as the most effective method of providing feedback. Detailed findings will be presented, and pedagogical implications of the study will be discussed.Keywords: ESL writing, error correction, feedback, written corrective feedback
Procedia PDF Downloads 2372384 Bio-Efficacy of Vermiwash and Leaf Extracts against Mealy Bug, Paracoccus marginatus Hemiptera: Pseudococcidae
Authors: Radha Rajamma, Susheela Palanisamy
Abstract:
The use of chemical fertilizers and pesticides has posed a serious threat to the environment, cause disturbance to the soil ecosystem, pollute the water causing serious health problems. The indigenous practices such as herbal spray, phyto-alternatives, etc. offer harmless alternatives in integrated pest management. The use of plant materials has become an integral part of insect pest management because of their cheap and non-toxic nature. Hence an investigation has been made to determine the bio-efficacy of vermiwash and two leaf extracts, Azadirachta indica and Vitex negundo against mealy bug, Paracoccus marginatus. The results on the effect of vermitechnologies on the activity of mealy bug indicated the effectiveness of vermiwash foliar application in suppressing the pest activity. Accumulative mortality of mealy bug increased gradually with the increase of exposure intervals. The combined treatment of vermiwash with Azadirachta indica reported the highest mortality percentage of 96% followed by the individual treatment of leaf extracts. Hence vermiwash was proved to be the most effective in enhancing the potency of mealy bug and decreased LC50 of the target insect.Keywords: Azadirachta indica, Paracoccus marginatus, vermiwash, Vitex negundo
Procedia PDF Downloads 2942383 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells
Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola
Abstract:
In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.Keywords: electrocoagulation, water, electrodes, iron
Procedia PDF Downloads 2642382 On the Transition of Europe’s Power Sector: Economic Consequences of National Targets
Authors: Geoffrey J. Blanford, Christoph Weissbart
Abstract:
The prospects for the European power sector indicate that it has to almost fully decarbonize in order to reach the economy-wide target of CO2-emission reduction. We apply the EU-REGEN model to explain the penetration of RES from an economic perspective, their spatial distribution, and the complementary role of conventional generation technologies. Furthermore, we identify economic consequences of national energy and climate targets. Our study shows that onshore wind power will be the most crucial generation technology for the future European power sector. Its geographic distribution is driven by resource quality. Gas power will be the major conventional generation technology for backing-up wind power. Moreover, a complete phase out of coal power proves to be not economically optimal. The paper demonstrates that existing national targets have a negative impact, especially on the German region with higher prices and lower revenues. The remaining regions profit are hardly affected. We encourage an EU-wide coordination on the expansion of wind power with harmonized policies. Yet, this requires profitable market structures for both, RES and conventional generation technologies.Keywords: European, policy evaluation, power sector investment, technology choices
Procedia PDF Downloads 2872381 Effectiveness of Gamified Simulators in the Health Sector
Authors: Nuno Biga
Abstract:
The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness
Procedia PDF Downloads 162380 Influence of Environmental Temperature on Dairy Herd Performance and Behaviour
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, S. Harapanahalli, J. Walsh
Abstract:
The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.Keywords: behavior, milk yield, temperature, precision technologies
Procedia PDF Downloads 1102379 Evaluation of Spatial Correlation Length and Karhunen-Loeve Expansion Terms for Predicting Reliability Level of Long-Term Settlement in Soft Soils
Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi
Abstract:
The spectral random field method is one of the widely used methods to obtain more reliable and accurate results in geotechnical problems involving material variability. Karhunen-Loeve (K-L) expansion method was applied to perform random field discretization of cross-correlated creep parameters. Karhunen-Loeve expansion method is based on eigenfunctions and eigenvalues of covariance function adopting Kernel integral solution. In this paper, the accuracy of Karhunen-Loeve expansion was investigated to predict long-term settlement of soft soils adopting elastic visco-plastic creep model. For this purpose, a parametric study was carried to evaluate the effect of K-L expansion terms and spatial correlation length on the reliability of results. The results indicate that small values of spatial correlation length require more K-L expansion terms. Moreover, by increasing spatial correlation length, the coefficient of variation (COV) of creep settlement increases, confirming more conservative and safer prediction.Keywords: Karhunen-Loeve expansion, long-term settlement, reliability analysis, spatial correlation length
Procedia PDF Downloads 1612378 Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements
Authors: Shibei Huang
Abstract:
In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question.Keywords: existing building, sensor, thermal analysis, retrofit
Procedia PDF Downloads 662377 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 1052376 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace
Authors: Junhai Liao, Yansong Shen, Aibing Yu
Abstract:
A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal
Procedia PDF Downloads 2442375 Directional Search for Dark Matter Using Nuclear Emulsion
Authors: Ali Murat Guler
Abstract:
A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.Keywords: dark matter, direct detection, nuclear emulsion, WIMPS
Procedia PDF Downloads 2732374 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria
Authors: Babatunde Adebo, Adedeji Adetoyinbo
Abstract:
Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration
Procedia PDF Downloads 2432373 Unseen Classes: The Paradigm Shift in Machine Learning
Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan
Abstract:
Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery
Procedia PDF Downloads 1752372 Effects of Aging on Auditory and Visual Recall Abilities
Authors: Rashmi D. G., Aishwarya G., Niharika M. K.
Abstract:
Purpose: Free recall tasks target cognitive and linguistic processes like episodic memory, lexical access and retrieval. Consequently, the free recall paradigm is suitable for assessing memory deterioration caused by aging; this also depends on linguistic factors, including the use of first and second languages and their relative ability. Hence, the present study aimed to determine if aging has an effect on visual and auditory recall abilities. Method: Twenty young adults (mean age: 25.4±0.99) and older adults (mean age: 63.3±3.51) participated in the study. Participants performed a free recall task under two conditions – related and unrelated and two modalities - visual and auditory where they were instructed to recall as many items as possible with no specific order and time limit. Results: Free recall performance was calculated as the mean number of correctly recalled items. Although younger participants recalled a higher number of items, the performance across conditions and modality was variable. Conclusion: In summary, the findings of the present study revealed an age-related decline in the efficiency of episodic memory, which is crucial to remember recent events.Keywords: recall, episodic memory, aging, modality
Procedia PDF Downloads 962371 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam
Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee
Abstract:
In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model
Procedia PDF Downloads 4762370 Social Marketing – An Integrated and Comprehensive Nutrition Communication Strategy to Improve the Iron Nutriture among Preschool Children
Authors: Manjula Kola, K. Chandralekha
Abstract:
Anaemia is one of the world’s most widespread health problems. Prevalence of anemia in south Asia is among the highest in the world. Iron deficiency anemia accounts for almost 85 percent of all types of anemia in India and affects more than half of the total population. Women of childbearing age particularly pregnant women, infants, preschool children and adolescents are at greatest risk of developing iron deficiency anemia. In India, 74 percent children between 6-35 months of age are anemic. Children between 1-6 years in major cities are found with a high prevalence rate of 64.8 percent. Iron deficiency anemia is not only a public health problem, but also a development problem. Its prevention and reduction must be viewed as investment in human capital that will enhance development and reduce poverty. Ending this hidden hunger in the form of iron deficiency is the most important achievable international health goal. Eliminating the underlying problem is essential to the sustained elimination of the iron deficiency anemia. The intervention programmes toward the sustained elimination need to be broadly based so that interventions become accepted community practices. Hence, intervention strategies need to go well beyond traditional health and nutrition systems and based upon empowering people and communities so that they will be capable of arranging for and sustaining an adequate intake of foods with respect to iron, independent of external support. Such strategies must necessarily be multisectoral and integrate interventions with social communications, evaluation and surveillance. The main objective of the study was to design a community based Nutrition intervention using theoretical framework of social marketing to sustain improvement of iron nutriture among preschool children. In order to carryout the study eight rural communities In Chittoor district of Andhra Pradesh, India were selected. A formative research was carryout for situational analysis and baseline data was generated with regard to demographic and socioeconomic status, dietary intakes, Knowledge, Attitude and Practices of the mothers of preschool children, clinical and hemoglobin status of the target group. Based on the formative research results, the research area was divides into four groups as experimental area I,II,III and control area. A community based, integrated and comprehensive social marketing intervention was designed based on various theories and models of nutrition education/ communication. In Experimental area I, Nutrition intervention using social marketing and a weekly iron folic acid supplementation was given to improve iron nutriture of preschool children. In experimental area II, Social marketing alone was implemented and in experimental area III Iron supplementation alone was given. No intervention was given in control area. The Impact evaluation revealed that among different interventions tested, the integrated social marketing intervention resulted best outcomes. The overall observations of the study state that social marketing, an integrated and functional strategy for nutrition communication to prevent and control iron deficiency. Various theoretical frame works / models for nutrition communication facilitate to design culturally appropriate interventions thus achieved improvements in the knowledge, attitude and practices there by resulting successful impact on nutritional status of the target groups.Keywords: anemia, iron deficiency, social marketing, theoretical framework
Procedia PDF Downloads 4062369 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach
Authors: Mortez Alijani, Anas Osman
Abstract:
Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point
Procedia PDF Downloads 1652368 Nanotechnology: A New Revolution to Increase Agricultural Production
Authors: Reshu Chaudhary, R. S. Sengar
Abstract:
To increase the agricultural production Indian farmer needs to aware of the latest technology i.e. precision farming to maximize the crop yield and minimize the input (fertilizer, pesticide etc.) through monitoring the environmental factors. Biotechnology and information technology have provided lots of opportunities for the development of agriculture. But, still we have to do much more for increasing our agricultural production in order to achieve the target growth of agriculture to secure food, to eliminate poverty and improve living style, to enhance agricultural exports and national income and to improve quality of agricultural products. Nanotechnology can be a great element to satisfy these requirements and to boost the multi-dimensional development of agriculture in order to fulfill the dream of Indian farmers. Nanotechnology is the most rapidly growing area of science and technology with its application in physical science, chemical science, life science, material science and earth science. Nanotechnology is a part of any nation’s future. Research in nanotechnology has extremely high potential to benefit society through application in agricultural sciences. Nanotechnology has greater potential to bring revolution in the agricultural sector.Keywords: agriculture, biotechnology, crop yield, nanotechnology
Procedia PDF Downloads 3642367 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets
Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou
Abstract:
Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification
Procedia PDF Downloads 4072366 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients
Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera
Abstract:
Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine
Procedia PDF Downloads 2552365 An Empirical Diagnosis of the Maladies and Therapies of Budgeting in Nigeria
Authors: Ben-Caleb Egbide, Omolehinwa O. Eddy, Adeyemi S. Keyinde, Eriabie Sylvester, Ojeka Stephen
Abstract:
The national budget remains an integral part of the developmental plan of the economy of any country. The budget reflects the fundamental values underlying the government’s economic policies and objectives and whose execution is expected to realize national/public desires. In Nigeria, over three decades budget had failed to deliver the desired benefits, suggesting the existence of infractions, which are yet to be empirically ascertained. This paper attempts a diagnosis of the infractions peculiar to Nigeria budgetary system and their suggested panacea. Data were collected through the administration of questionnaire to a cross section of organizations/institutions representing government agencies and the general public. Mann-Whitney U test was employed to gauge the consistency in perception of the two groups. The result revealed that budget indiscipline, official corruption, allocative inefficiency and poor budget governance are the most influential infractions of budgeting in Nigeria. Consequently, it was suggested that budget transparency, target budgeting, zero tolerance on corruption and budget discipline are the most cogent therapies to the malfunctioning in Nigerian budgetary system.Keywords: budgeting, budget maladies, budget therapies, Nigeria
Procedia PDF Downloads 2942364 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 1552363 Developing Cucurbitacin a Minimum Inhibition Concentration of Meloidogyne Incognita Using a Computer-Based Model
Authors: Zakheleni P. Dube, Phatu W. Mashela
Abstract:
Minimum inhibition concentration (MIC) is the lowest concentration of a chemical that brings about significant inhibition of target organism. The conventional method for establishing the MIC for phytonematicides is tedious. The objective of this study was to use the Curve-fitting Allelochemical Response Data (CARD) to determine the MIC for pure cucurbitacin A on Meloidogyne incognita second-stage juveniles (J2) hatch, immobility and mortality. Meloidogyne incognita eggs and freshly hatched J2 were separately exposed to a series of pure cucurbitacin A concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹for 12, 24, 48 and 72 h in an incubator set at 25 ± 2°C. Meloidogyne incognita J2 hatch, immobility and mortality counts were determined using a stereomicroscope and the significant means were subjected to the CARD model. The model exhibited density-dependent growth (DDG) patterns of J2 hatch, immobility and mortality to increasing concentrations of cucurbitacin A. The average MIC for cucurbitacin A on M. incognita J2 hatch, immobility and mortality were 2.2, 0.58 and 0.63 µg.mL⁻¹, respectively. Meloidogyne incognita J2 hatch had the highest average MIC value followed by mortality and immobility had the least. In conclusion, the CARD model was able to generate MIC for cucurbitacin A, hence it could serve as a valuable tool in the chemical-nematode bioassay studies.Keywords: inhibition concentration, phytonematicide, sensitivity index, threshold stimulation, triterpenoids.
Procedia PDF Downloads 1922362 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1752361 Synchronization of Two Mobile Robots
Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez
Abstract:
It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.Keywords: robots, synchronization, bidirectional, coordinate navigation
Procedia PDF Downloads 3592360 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics
Procedia PDF Downloads 3242359 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 78