Search results for: thermal rating
1428 CO2 Mitigation by Promoting Solar Heating in Housing Sector
Authors: F. Sahnoune, M. Madani, M. Zelmat, M. Belhamel
Abstract:
Home heating and generation of domestic hot water are nowadays important items of expenditure and energy consumption. These are also a major source of pollution and emission of greenhouse gases (GHG). Algeria, like other countries of the southern shore of the Mediterranean has an enormous solar potential (more than 3000 hours of sunshine/year). This potential can be exploited in reducing GHG emissions and contribute to climate change adaptation. This work presents the environmental impact of introduction of solar heating in an individual house in Algerian climate conditions. For this purpose, we determined energy needs for heating and domestic hot water taking into account the thermic heat losses of the no isolated house. Based on these needs, sizing of the solar system was carried out. To compare the performances of solar and classic systems, we conducted also an economic evaluation what is very important for countries like Algeria where conventional energy is subsidized. The study clearly show that environmental and economic benefits are in favor of solar heating development in particular in countries where the thermal insulation of the building and energy efficiency are poorly developed.Keywords: CO2 mitigation, solar energy, solar heating, environmental impact
Procedia PDF Downloads 3991427 The Study of Sintered Wick Structure of Heat Pipes with Excellent Heat Transfer Capabilities
Authors: Im-Nam Jang, Yong-Sik Ahn
Abstract:
In this study sintered wick was formed in a heat pipe through the process of sintering a mixture of copper powder with particle sizes of 100μm and 200μm, mixed with a pore-forming agent. The heat pipe's thermal resistance, which affects its heat transfer efficiency, is determined during manufacturing according to powder type, thickness of the sintered wick, and filling rate of the working fluid. Heat transfer efficiency was then tested at various inclination angles (0°, 45°, 90°) to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200μm copper powder type exhibited superior heat transfer efficiency compared to the 100μm type. After analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined that the heat pipe's optimal heat transfer capability occurred at a working fluid filling rate of 30%. The width of the wick was directly related to the heat transfer performance.Keywords: heat pipe, heat transfer performance, effective pore size, capillary force, sintered wick
Procedia PDF Downloads 641426 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle
Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour
Abstract:
One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle
Procedia PDF Downloads 3791425 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing
Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang
Abstract:
Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting
Procedia PDF Downloads 2861424 Efficacy and Safety of Computerized Cognitive Training Combined with SSRIs for Treating Cognitive Impairment Among Patients with Late-Life Depression: A 12-Week, Randomized Controlled Study
Authors: Xiao Wang, Qinge Zhang
Abstract:
Background: This randomized, open-label study examined the therapeutic effects of computerized cognitive training (CCT) combined with selective serotonin reuptake inhibitors (SSRIs) on cognitive impairment among patients with late-life depression (LLD). Method: Study data were collected from May 5, 2021, to April 21, 2023. Outpatients who met diagnostic criteria for major depressive disorder according to the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria (i.e., a total score on the 17-item Hamilton Depression Rating Scale (HAMD-17) ≥ 18 and a total score on the Montreal Cognitive Assessment scale (MOCA) <26) were randomly assigned to receive up to 12 weeks of CCT and SSRIs treatment (n=57) or SSRIs and Control treatment (n=61). The primary outcome was the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores from baseline to week 12 between the two groups. The secondary outcomes included changes in the HAMD-17 score, Hamilton Anxiety Scale (HAMA) score and Neuropsychiatric Inventory (NPI) score. Mixed model repeated measures (MMRM) analysis was performed on modified intention-to-treat (mITT) and completer populations. Results: The full analysis set (FAS) included 118 patients (CCT and SSRIs group, n=57; SSRIs and Control group, n =61). Over the 12-week study period, the reduction in the ADAS-cog total score was significant (P < 0.001) in both groups, while MMRM analysis revealed a significantly greater reduction in cognitive function (ADAS-cog total scores) from baseline to posttreatment in the CCT and SSRIs group than in the SSRI and Control group [(F (1,115) =13.65, least-squares mean difference [95% CI]: −2.77 [−3.73, −1.81], p<0.001)]. There were significantly greater improvements in depression symptoms (measured by the HAMD-17) in the CCT and SSRIs group than in the control group [MMRM, estimated mean difference (SE) between groups −3.59 [−5.02, −2.15], p < 0.001]. The least-squares mean changes in the HAMA scores and NPI scores between baseline and week 8 were greater in the CCT and SSRIs group than in the control group (all P < 0.05). There was no significant difference between groups on response rates and remission rates by using the last-observation-carried-forward (LOCF) method (all P > 0.05). The most frequent adverse events (AEs) in both groups were dry mouth, somnolence, and constipation. There was no significant difference in the incidence of adverse events between the two groups. Conclusions: CCT combined with SSRIs was efficacious and well tolerated in LLD patients with cognitive impairment.Keywords: late-life depression, cognitive function, computerized cognitive training, SSRIs
Procedia PDF Downloads 541423 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method
Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay
Abstract:
Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method
Procedia PDF Downloads 4731422 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys
Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz
Abstract:
There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling
Procedia PDF Downloads 1801421 Malaysian's Shale Formation Characterizations: Geochemical Properties, Mineralogy, Adsorption and Desorption Behavior
Authors: Ahmed M. Al-Mutarreb, Shiferaw R. Jufar
Abstract:
Global shale gas resource assessment is still in its preliminary stage in most of the countries including the development of shale gas reservoirs in Malaysia. This project presents the main geochemical and mineral characteristics of few Malaysian’s shale samples which contribute on evaluating shale gas reserve world resource evaluations. Three shale samples from the western part of Peninsular Malaysia (Batu-Caja, Kuala Lumpur, and Johor Baru shale formations) were collected for this study. Total organic carbon wt.%, thermal maturity, kerogen type, mineralogy and adsorption/desorption characteristics are measured at Universiti Teknologi PETRONAS laboratories. Two samples show good potential in TOC results exhibited > 2wt.% exceeding the minimum values of Shale gas potential, while the third revealed < 1.5wt. Mineralogical compositions for the three samples are within the acceptable range percentage% of quartz and clays compared to shale plays in USA. This research’s results are promising and recommend to continue exploring and assessing unconventional shale gas reserves values in these areas.Keywords: shale gas characterizations, geochemical properties, Malaysia, shale gas reserve
Procedia PDF Downloads 3261420 Theoretical Study of Flexible Edge Seals for Vacuum Glazing
Authors: Farid Arya, Trevor Hyde
Abstract:
The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.Keywords: flexible edge seal, stress, support pillar, vacuum glazing
Procedia PDF Downloads 2341419 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack
Authors: Vincent Andrew Cappellano
Abstract:
In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.Keywords: architecture, resiliency, availability, cyber-attack
Procedia PDF Downloads 1091418 Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre
Authors: Gloria James, S. K. Nema, T. S. Anantha Singh, P. Vadivel Murugan
Abstract:
The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres.Keywords: plasma, gasification, syngas, tyre waste
Procedia PDF Downloads 1821417 An Experimental Study on Intellectual Concentration Influenced by Indoor Airflow
Authors: Kyoko Ito, Shinya Furuta, Daisuke Kamihigashi, Kimi Ueda, Hirotake Ishii, Hiroshi Shimoda, Fumiaki Obayashi, Kazuhiro Taniguchi
Abstract:
In order to improve intellectual concentration, few studies have verified the effect of indoor airflow among the thermal environment conditions, and the differences of the season in effects have not been studied. In this study, in order to investigate the influence of the airflow in winter on the intellectual concentration, an evaluation experiment was conducted. In the previous study, an effective airflow in summer was proposed and the improvement of intellectual concentration by evaluation experiment was confirmed. Therefore, an airflow profile in winter was proposed with reference to the airflow profile in summer. The airflows are a combination of a simulative airflow and mild airflow. An experiment has been conducted to investigate the influence of a room airflow in winter on intellectual concentration. As a result of comparison with no airflow condition, no significant difference was found. Based on the results, it is a future task to ask preliminary preference in advance and to establish a mechanism that can provide controllable airflow for each individual, taking into account the preference for airflow to be different for each individual.Keywords: concentration time ratio, CTR, indoor airflow, intellectual concentration, workplace environment
Procedia PDF Downloads 2351416 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance
Authors: X. Lu, T. Lu, S. Javadi
Abstract:
A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings
Procedia PDF Downloads 1511415 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems
Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng
Abstract:
Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system
Procedia PDF Downloads 1961414 OnabotulinumtoxinA Injection for Glabellar Frown Lines as an Adjunctive Treatment for Depression
Authors: I. Witbooi, J. De Smidt, A. Oelofse
Abstract:
Negative emotions that are common in depression are coupled with the activation of the corrugator supercilli and procerus muscles in the glabellar region of the face. This research investigated the impact of OnabotulinumtoxinA (BOTOX) in the improvement of emotional states in depressed subjects by relaxing the mentioned muscles. The aim of the study was to investigate the effectiveness of BOTOX treatment for glabellar frown lines as an adjunctive therapy for Major Depressive Disorder (MDD) and to improve the quality of life and self-esteem of the subjects. It is hypothesized that BOTOX treatment for glabellar frown lines reduces depressive symptoms significantly and therefore augment conventional antidepressant medication. Forty-five (45) subjects diagnosed with MDD were assigned to a treatment (n = 15), placebo (n = 15), and control (n = 15) group. The treatment group received BOTOX injection, while the placebo group received saline injection into the Procerus and Corrugator supercilli muscles with follow-up visits every 3 weeks (weeks 3, 6 and 12 respectively). The control group received neither BOTOX nor saline injections and were only interviewed again on the 12th week. To evaluate the effect of BOTOX treatment in the glabellar region on depressive symptoms, the Montgomery-Asberg Depression Rating (MADRS) scale and the Beck Depression Inventory (BDI) were used. The Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) and Rosenberg Self-Esteem Scale (RSES) were used in the assessment of self-esteem and quality of life. Participants were followed up for a 12 week period. The expected primary outcome measure is the response to treatment, and it is defined as a ≥ 50% reduction in MADRS score from baseline. Other outcome measures include a clinically significant decrease in BDI scores and the increase in quality of life and self-esteem respectively. Initial results show a clear trend towards such differences. Results showed trends towards expected differences. Patients in the Botox group had a mean MADRS score of 14.0 at 3 weeks compared to 20.3 of the placebo group. This trend was still visible at 6 weeks with the Botox and placebo group scoring an average of 10 vs. 18 respectively. The mean difference in MDRS scores from baseline to 3 weeks were 9.3 and 2.0 for the Botox and placebo group respectively. Similarly, the BDI scores were lower in the Botox group (17.25) compared to the placebo group (19.43). The two self-esteem questionnaires showed expected results at this stage with the RSES 19.1 in the Botox group compared to 18.6 in the placebo group. Similarly, the Botox patients had a higher score for the Q-LES-Q-SF of 49.2 compared to 46.1 for the placebo group. Conclusions: Initial results clearly demonstrated that the use of Botox had positive effects on both scores of depressions and that of self-esteem when compared to a placebo group.Keywords: adjunctive therapy, depression, glabellar area, OnabotulinumtoxinA
Procedia PDF Downloads 1351413 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach
Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert
Abstract:
Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems
Procedia PDF Downloads 1501412 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents
Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary
Abstract:
Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis
Procedia PDF Downloads 3631411 Upcycling of Inorganic Waste: Lessons Learned and Outlook for the Future
Authors: Miroslava Hujová, Patricia Rabello Monich, Jozef Kraxner, Dusan Galusek, Enrico Bernardo
Abstract:
Inorganic waste upcycling offers a solution how to avoid landfilling and how to save raw materials at the same time. However, its practical implementations in Slovakia and elsewhere in Europe, are rather limited despite the potential smaller countries like Slovakia have their advantage in closely-knitted inorganic materials industry. One part of discussion should include an overview of wastes that can be possibly used for upcycling, i.e. fly ashes, red mud, glass cullets, vitrified bottom ashes etc. These wastes can be processed by a variety of strategies, the one of our choice, alkali activation, opens the possibility for the formation of novel materials at almost negligible energetic expense. In the research, these materials are characterized by comprehensive means (X-Ray Fluorescece, Diffraction methods, Thermal Analysis, Scanning Electron Microscopy, Mechanical tests and Chemical stability), which time and time again demonstrate their competitive properties against traditional materials available at the market. It is just a question for discussion why these materials do not receive more significant attention from industry and there is pressing interest for the solution of standing situation.Keywords: upcycling, inorganic wastes, glass ceramics, alkali-activation
Procedia PDF Downloads 1371410 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 791409 A Systematic Review of Efficacy and Safety of Radiofrequency Ablation in Patients with Spinal Metastases
Authors: Pascale Brasseur, Binu Gurung, Nicholas Halfpenny, James Eaton
Abstract:
Development of minimally invasive treatments in recent years provides a potential alternative to invasive surgical interventions which are of limited value to patients with spinal metastases due to short life expectancy. A systematic review was conducted to explore the efficacy and safety of radiofrequency ablation (RFA), a minimally invasive treatment in patients with spinal metastases. EMBASE, Medline and CENTRAL were searched from database inception to March 2017 for randomised controlled trials (RCTs) and non-randomised studies. Conference proceedings for ASCO and ESMO published in 2015 and 2016 were also searched. Fourteen studies were included: three prospective interventional studies, four prospective case series and seven retrospective case series. No RCTs or studies comparing RFA with another treatment were identified. RFA was followed by cement augmentation in all patients in seven studies and some patients (40-96%) in the remaining seven studies. Efficacy was assessed as pain relief in 13/14 studies with the use of a numerical rating scale (NRS) or a visual analogue scale (VAS) at various time points. Ten of the 13 studies reported a significant decrease in pain outcome, post-RFA compared to baseline. NRS scores improved significantly at 1 week (5.9 to 3.5, p < 0.0001; 8 to 4.3, p < 0.02 and 8 to 3.9, p < 0.0001) and this improvement was maintained at 1 month post-RFA compared to baseline (5.9 to 2.6, p < 0.0001; 8 to 2.9, p < 0.0003; 8 to 2.9, p < 0.0001). Similarly, VAS scores decreased significantly at 1 week (7.5 to 2.7, p=0.00005; 7.51 to 1.73, p < 0.0001; 7.82 to 2.82, p < 0.001) and this pattern was maintained at 1 month post-RFA compared to baseline (7.51 to 2.25, p < 0.0001; 7.82 to 3.3; p < 0.001). A significant pain relief was achieved regardless of whether patients had cement augmentation in two studies assessing the impact of RFA with or without cement augmentation on VAS pain scores. In these two studies, a significant decrease in pain scores was reported for patients receiving RFA alone and RFA+cement at 1 week (4.3 to 1.7. p=0.0004 and 6.6 to 1.7, p=0.003 respectively) and 15-36 months (7.9 to 4, p=0.008 and 7.6 to 3.5, p=0.005 respectively) after therapy. Few minor complications were reported and these included neural damage, radicular pain, vertebroplasty leakage and lower limb pain/numbness. In conclusion, the efficacy and safety of RFA were consistently positive between prospective and retrospective studies with reductions in pain and few procedural complications. However, the lack of control groups in the identified studies indicates the possibility of selection bias inherent in single arm studies. Controlled trials exploring efficacy and safety of RFA in patients with spinal metastases are warranted to provide robust evidence. The identified studies provide an initial foundation for such future trials.Keywords: pain relief, radiofrequency ablation, spinal metastases, systematic review
Procedia PDF Downloads 1731408 Spatially Downscaling Land Surface Temperature with a Non-Linear Model
Authors: Kai Liu
Abstract:
Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature
Procedia PDF Downloads 3291407 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites
Authors: G. B. Manjunatha
Abstract:
Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence
Procedia PDF Downloads 1561406 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim
Abstract:
In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite
Procedia PDF Downloads 3181405 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin
Authors: Abolghasem Akbari
Abstract:
The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff
Procedia PDF Downloads 2871404 Characterization of the Worn Surfaces of Brake Discs and Friction Materials after Dynobench Tests
Authors: Ana Paula Gomes Nogueira, Pietro Tonolini, Andrea Bonfanti
Abstract:
Automotive braking systems must convert kinetic into thermal energy by friction. Nowadays, the disc brake system is the most widespread configuration on the automotive market, which its specific configuration provides a very efficient heat dissipation. At the same time, both discs and pads wear out. Different wear mechanisms can act during the braking, which makes the understanding of the phenomenon essential for the strategies to be applied when an increased lifetime of the components is required. In this study, a specific characterization approach was conducted to analyze the worn surfaces of commercial pad friction materials and its conterface cast iron disc after dynobench tests. Scanning electronic microscope (SEM), confocal microscope, and focus ion beam microscope (FIB) were used as the main tools of the analysis, and they allowed imaging of the footprint of the different wear mechanisms presenting on the worn surfaces. Aspects such as the temperature and specific ingredients of the pad friction materials are discussed since they play an important role in the wear mechanisms.Keywords: wear mechanism, surface characterization, brake tests, friction materials, disc brake
Procedia PDF Downloads 531403 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery
Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa
Abstract:
This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.Keywords: membrane distillation, heat transfer, heat recovery, desalination
Procedia PDF Downloads 2671402 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear
Procedia PDF Downloads 2981401 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion
Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan
Abstract:
Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste
Procedia PDF Downloads 4731400 Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas
Authors: Adila Shafqat
Abstract:
Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas.Keywords: climate change, surface temperatures, green spaces, urban planning
Procedia PDF Downloads 1201399 Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling
Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Nemanja Sarovic
Abstract:
A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs.Keywords: assembly, automotive industry, battery system, battery concept
Procedia PDF Downloads 306