Search results for: membrane synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3095

Search results for: membrane synthesis

425 Some Issues of Measurement of Impairment of Non-Financial Assets in the Public Sector

Authors: Mariam Vardiashvili

Abstract:

The economic value of the asset impairment process is quite large. Impairment reflects the reduction of future economic benefits or service potentials itemized in the asset. The assets owned by public sector entities bring economic benefits or are used for delivery of the free-of-charge services. Consequently, they are classified as cash-generating and non-cash-generating assets. IPSAS 21 - Impairment of non-cash-generating assets, and IPSAS 26 - Impairment of cash-generating assets, have been designed considering this specificity.  When measuring impairment of assets, it is important to select the relevant methods. For measurement of the impaired Non-Cash-Generating Assets, IPSAS 21 recommends three methods: Depreciated Replacement Cost Approach, Restoration Cost Approach, and  Service Units Approach. Impairment of Value in Use of Cash-Generating Assets (according to IPSAS 26) is measured by discounted value of the money sources to be received in future. Value in use of the cash-generating asserts (as per IPSAS 26) is measured by the discounted value of the money sources to be received in the future. The article provides classification of the assets in the public sector  as non-cash-generating assets and cash-generating assets and, deals also with the factors which should be considered when evaluating  impairment of assets. An essence of impairment of the non-financial assets and the methods of measurement thereof evaluation are formulated according to IPSAS 21 and IPSAS 26. The main emphasis is put on different methods of measurement of the value in use of the impaired Cash-Generating Assets and Non-Cash-Generation Assets and the methods of their selection. The traditional and the expected cash flow approaches for calculation of the discounted value are reviewed. The article also discusses the issues of recognition of impairment loss and its reflection in the financial reporting. The article concludes that despite a functional purpose of the impaired asset, whichever method is used for measuring the asset, presentation of realistic information regarding the value of the assets should be ensured in the financial reporting. In the theoretical development of the issue, the methods of scientific abstraction, analysis and synthesis were used. The research was carried out with a systemic approach. The research process uses international standards of accounting, theoretical researches and publications of Georgian and foreign scientists.

Keywords: cash-generating assets, non-cash-generating assets, recoverable (usable restorative) value, value of use

Procedia PDF Downloads 120
424 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins

Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska

Abstract:

The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.

Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides

Procedia PDF Downloads 102
423 Human Par14 and Par17 Isomerases Bind Hepatitis B Virus Components Inside and Out

Authors: Umar Saeed

Abstract:

Peptidyl-prolyl cis/trans isomerases Par14 and Par17 in humans play crucial roles in diverse cellular processes, including protein folding, chromatin remodeling, DNA binding, ribosome biogenesis, and cell cycle progression. However, the effects of Par14 and Par17 on viral replication have been explored to a limited extent. We first time discovered their influential roles in promoting Hepatitis B Virus replication. In this study, we observed that in the presence of HBx, either Par14 or Par17 could upregulate HBV replication. However, in the absence of HBx, neither Par14 nor Par17 had any effect on replication. Their mechanism of action involves binding to specific motifs within HBc and HBx proteins. Notably, they target the conserved 133Arg-Pro134 (RP) motif of HBc and the 19RP20-28RP29 motifs of HBx. This interaction is fundamental for the stability of HBx, core particles, and HBc. Par14 and Par17 exhibit versatility by binding both outside and inside core particles, thereby facilitating core particle assembly through their participation in HBc dimer-dimer interactions. NAGE and immunoblotting analyses unveiled the binding of Par14/Par17 to core particles. Co-immunoprecipitation experiments further demonstrated the interaction of Par14/Par17 with core particle assembly-defective and dimer-positive HBc-Y132A. It's essential to emphasize that R133 is the key residue in the HBc RP motif that governs their interaction with Par14/Par17. Chromatin immunoprecipitation conducted on HBV-infected cells elucidated the participation of residues S19 and E46/D74 in Par14 and S44 and E71/D99 in Par17 in the recruitment of 133RP134 motif-containing HBc into cccDNA. Depleting PIN4 in liver cell lines results in a significant reduction in cccDNA levels, pgRNA, sgRNAs, HBc, core particle assembly, and HBV DNA synthesis. Notably, parvulin inhibitors like juglone and PiB have proven to be effective in substantially reducing HBV replication. These inhibitors weaken the interaction between HBV core particles and Par14/Par17, underscoring the dynamic nature of this interaction. It's also worth noting that specific Par14/Par17 inhibitors hold promise as potential therapeutic options for chronic hepatitis B.

Keywords: Par14Par17, HBx, HBc, cccDNA, HBV

Procedia PDF Downloads 49
422 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)

Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile

Abstract:

Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.

Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon

Procedia PDF Downloads 46
421 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 88
420 Resistance Training and Ginger Consumption on Cytokines Levels

Authors: Alireza Barari, Ahmad Abdi

Abstract:

Regular body trainings cause adaption in various system in body. One of the important effect of body training is its effect on immune system. It seems that cytokines usually release after long period exercises or some exercises which cause skeletal muscular damages. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program, it can be avoided or limited from those exercises which induct cytokines release. Ginger plant is a kind of medicinal plants which is known as a anti inflammation plant. This plant is as most precedence medicinal plants in medicine science especially in inflammation cure. The aim of the present study was the effect of selected resistance training and consumption of ginger extract on IL-1α and TNFα untrained young women. The population includes young women interested in participating in the study with the average of 30±2 years old from Abbas Abad city among which 32 participants were chosen randomly and divided into 4 four groups, resistance training (R), resistance training and ginger consumption(RG), Ginger consumption(G)and Control group(C). The training groups performed circuit resistance training at the intensity of 65-75% one repeat maximum, 3 days a week for 6 weeks. Besides resistance training, subjects were given either ginseng (5 mg/kg per day) or placebo. Prior to and 48 hours after interventions body composition was measured and blood samples were taken in order to assess serum levels of IL-1α and TNFα. Plasma levels of cytokines were measured with commercially available ELISA Kits.IL-1α kit and TNFα kit were used in this research. To demonstrate the effectiveness of the independent variable and the comparison between groups, t-test and ANOVA were used. To determine differences between the groups, the Scheffe test was used that showed significant changes in any of the variables. we observed that circuit resistance training in R and RG groups can significant decreased in weight and body mass index in untrained females (p<0.05). The results showed a significant decreased in the mean level of IL-1α levels before and after the training period in G group (p=0.046) and RG group (p=0.022). Comparison between groups also showed there was significant difference between groups R-RG and RG-C. Intergroup comparison results showed that the mean levels of TNFα before and after the training in group G (p=0.044) and RG (p=0.037), significantly decreased. Comparison between groups also showed there was significant difference between groups R–RG , R-G ,RG-C and G-C. The research shows that circuit resistance training with reducing overload method results in systemic inflammation had significant effect on IL-1α levels and TNFα. Of course, Ginger can counteract the negative effects of resistance training exercise on immune function and stability of the mast cell membrane. Considerable evidence supported the anti-inflammatory properties of ginger for several constituents, especially gingerols, shogaols, paradols, and zingerones, through decreased cytokine gene TNF α and IL-1Α expression and inhibition of cyclooxygenase 1 and 2. These established biological actions suggest that ingested ginger could block the increase in IL-1α.

Keywords: resistance training, ginger, IL-1α , TNFα

Procedia PDF Downloads 411
419 Advanced Study on Hydrogen Evolution Reaction based on Nickel sulfide Catalyst

Authors: Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Assim Alajali, Godlaveeti Sreenivasa Kumar, Aboubakr M. Abdullah, Bijandra Kumar, Mithra Geetha

Abstract:

A potential pathway for efficient hydrogen production from water splitting electrolysis involves catalysis or electrocatalysis, which plays a crucial role in energy conversion and storage. Hydrogen generated by electrocatalytic water splitting requires active, stable, and low-cost catalysts or electrocatalysts to be developed for practical applications. In this study, we evaluated combination of 2D materials of NiS nanoparticle catalysts for hydrogen evolution reactions. The photocatalytic H₂ production rate of this nanoparticle is high and exceeds that obtained on components alone. Nanoparticles serve as electron collectors and transporters, which explains this improvement. Moreover, a current density was recorded at reduced working potential by 0.393 mA. Calculations based on density functional theory indicate that the nanoparticle's hydrogen evolution reaction catalytic activity is caused by strong interaction between its components at the interface. The samples were analyzed by XPS and morphologically by FESEM for the best outcome, depending on their structural shapes. Use XPS and morphologically by FESEM for the best results. This nanocomposite demonstrated higher electro-catalytic activity, and a low tafel slope of 60 mV/dec. Additionally, despite 1000 cycles into a durability test, the electrocatalyst still displays excellent stability with minimal current loss. The produced catalyst has shown considerable potential for use in the evolution of hydrogen due to its robust synthesis. According to these findings, the combination of 2D materials of nickel sulfide sample functions as good electocatalyst for H₂ evolution. Additionally, the research being done in this fascinating field will surely push nickel sulfide-based technology closer to becoming an industrial reality and revolutionize existing energy issues in a sustainable and clean manner.

Keywords: electrochemical hydrogenation, nickel sulfide, electrocatalysts, energy conversion, catalyst

Procedia PDF Downloads 104
418 Fabrication of Electrospun Microbial Siderophore-Based Nanofibers: A Wound Dressing Material to Inhibit the Wound Biofilm Formation

Authors: Sita Lakshmi Thyagarajan

Abstract:

Nanofibers will leave no field untouched by its scientific innovations; the medical field is no exception. Electrospinning has proven to be an excellent method for the synthesis of nanofibers which, have attracted the interest for many biomedical applications. The formation of biofilms in wounds often leads to chronic infections that are difficult to treat with antibiotics. In order to minimize the biofilms and enhance the wound healing, preparation of potential nanofibers was focused. In this study, siderophore incorporated nanofibers were electrospun using biocompatible polymers onto the collagen scaffold and were fabricated into a biomaterial suitable for the inhibition of biofilm formation. The purified microbial siderophore was blended with Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO in a suitable solvent. Fabrication of siderophore blended nanofibers onto the collagen surface was done using standard protocols. The fabricated scaffold was subjected to physical-chemical characterization. The results indicated that the fabrication processing parameters of nanofiberous scaffold was found to possess the characteristics expected of the potential scaffold with nanoscale morphology and microscale arrangement. The influence of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO solution concentration, applied voltage, tip-to-collector distance, feeding rate, and collector speed were studied. The optimal parameters such as the ratio of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO concentration, applied voltage, tip-to-collector distance, feeding rate, collector speed were finalized based on the trial and error experiments. The fibers were found to have a uniform diameter with an aligned morphology. The overall study suggests that the prepared siderophore entrapped nanofibers could be used as a potent tool for wound dressing material for inhibition of biofilm formation.

Keywords: biofilms, electrospinning, nano-fibers, siderophore, tissue engineering scaffold

Procedia PDF Downloads 108
417 An Exploration of The Patterns of Transcendence in Indian and Hopkins’s Aesthetics

Authors: Lima Antony

Abstract:

In G. M. Hopkins’s poetics and aesthetics there is scope for a comparative study with Indian discourses on aesthetics, an area not adequately explored so far. This exploration will enrich the field of comparative study of diverse cultural expressions and their areas of similarity. A comparative study of aesthetic and religious experiences in diverse cultures will open up avenues for the discovery of similarities in self-experiences and their transcendence. Such explorations will reveal similar patterns in aesthetic and religious experiences. The present paper intends to prove this in the theories of Hopkins and Indian aesthetics. From the time of the Vedas Indian sages have believed that aesthetic enjoyment could develop into a spiritual realm. From the Natyasastra of Bharata, Indian aesthetics develops and reaches its culmination in later centuries into a consciousness of union with the mystery of the Ultimate Being, especially in Dhvanaāloka of Anandavardhana and Locana of Abhinavagupta. Dhvanyaloka elaborates the original ideas of rasa (mood or flavor) and dhvani (power of suggestion) in Indian literary theory and aesthetics. Hopkins was successful, like the ancient Indian alankarikas, in creating aesthetically superb patterns at various levels of sound and sense for which he coined the term ‘inscape’. So Hopkins’s aesthetic theory becomes suitable for transcultural comparative study with Indian aesthetics especially the dhvani theories of Anandavardhana and Abhinavagupta. Hopkins’s innovative approach to poetics and his selection of themes are quite suitable for analysis in the light of Indian literary theories. Indian philosophy views the ultimate reality called Brahman, as the 'soul,' or inner essence, of all reality. We see in Hopkins also a search for the essence of things and the chiming of their individuality with the Ultimate Being in multidimensional patterns of sound, sense and ecstatic experience. This search culminates in the realization of a synthesis of the individual self with the Ultimate Being. This is achieved through an act of surrender of the individuality of the self before the Supreme Being. Attempts to reconcile the immanent and transcendent aspects of the Ultimate Being can be traced in the Indian as well as Hopkins’s aesthetics which can contribute to greater understanding and harmony between cultures.

Keywords: Dhvani, Indian aesthetics, transcultural studies, Rasa

Procedia PDF Downloads 133
416 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients

Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming

Abstract:

Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.

Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry

Procedia PDF Downloads 276
415 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 79
414 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 229
413 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens

Authors: Chaiyaset Promsri

Abstract:

Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living).  The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable.  Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax.  The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness".  Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness".  Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.

Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens

Procedia PDF Downloads 360
412 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 124
411 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 270
410 Alternative Ways of Knowing and the Construction of a Department Around a Common Critical Lens

Authors: Natalie Delia

Abstract:

This academic paper investigates the transformative potential of incorporating alternative ways of knowing within the framework of Critical Studies departments. Traditional academic paradigms often prioritize empirical evidence and established methodologies, potentially limiting the scope of critical inquiry. In response to this, our research seeks to illuminate the benefits and challenges associated with integrating alternative epistemologies, such as indigenous knowledge systems, artistic expressions, and experiential narratives. Drawing upon a comprehensive review of literature and case studies, we examine how alternative ways of knowing can enrich and diversify the intellectual landscape of Critical Studies departments. By embracing perspectives that extend beyond conventional boundaries, departments may foster a more inclusive and holistic understanding of critical issues. Additionally, we explore the potential impact on pedagogical approaches, suggesting that alternative ways of knowing can stimulate alternative way of teaching methods and enhance student engagement. Our investigation also delves into the institutional and cultural shifts necessary to support the integration of alternative epistemologies within academic settings. We address concerns related to validation, legitimacy, and the potential clash with established norms, offering insights into fostering an environment that encourages intellectual pluralism. Furthermore, the paper considers the implications for interdisciplinary collaboration and the potential for cultivating a more responsive and socially engaged scholarship. By encouraging a synthesis of diverse perspectives, Critical Studies departments may be better equipped to address the complexities of contemporary issues, encouraging a dynamic and evolving field of study. In conclusion, this paper advocates for a paradigm shift within Critical Studies departments towards a more inclusive and expansive approach to knowledge production. By embracing alternative ways of knowing, departments have the opportunity to not only diversify their intellectual landscape but also to contribute meaningfully to broader societal dialogues, addressing pressing issues with renewed depth and insight.

Keywords: critical studies, alternative ways of knowing, academic department, Wallerstein

Procedia PDF Downloads 45
409 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)

Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity

Procedia PDF Downloads 406
408 An Analysis of Methodological Approaches of Ahmed Cevdet and Fatma Aliye towards the Ottoman Historiography in a Comparative Context

Authors: Aysen Muderrisoglu Esiner

Abstract:

As an intellectual, scholar, bureaucrat, and statesman, Ahmed Cevdet Pasha (1822-1895) was the prominent figure of “Tanzimat” (reorganization) reforms of the Ottoman State while his daughter Fatma Aliye (1862-1936) was a novelist, columnist, essayist, and women’s rights activist. His father had numerous books on law, grammar, linguistics, logic, and astronomy, moreover, Aliye accepted as the first female novelist in the Turkish literature and the Islamic world. Even if she was better known as a novelist, she also published some works on philosophy, Islam, poetry. In addition, Aliye who was one of the pioneers of the Ottoman women’s movement, also wrote historical works. Her historical works which titled as Tarih-i Osmaninin Bir Devre-i Mühimmesi Kosova Zaferi-Ankara Hezimeti (An Important Era of the Ottoman History: Kosova Victory-Ankara Defeat), and Ahmed Cevdet Paşa ve Zamanı (Ahmed Cevdet Pasha and His Time) have been generally ignored in the literature. However, Aliye’s works in history field are worth being studied in terms of her methodological approach to the Ottoman historiography. On the other hand, written by Ahmed Cevdet Pasha, such as Tarih-i Cevdet (History of Cevdet), Tezâkir (Memoir), Mâruzat (Reports, the events that took place between 1839-1876, 1890), Kısas-ı Enbiya ve Tevârîh-i Hulefa (Retaliation of the Prophets and the History of Calips), Kırım ve Kafkas Tarihçesi (Crimean and Caucasian History) are the most important works in terms of historiography in the 19th century. In contrast to the traditional methodology, Cevdet Pasha brought a new understanding to the Ottoman historiography by making a synthesis between the traditional and modern methods. In this research, the historical works of these two prominent figures of the Ottoman State will be analyzed in terms of their approaches to the Ottoman historiography while evaluating the following questions: to what extent that their use of local and foreign historical sources and their handling of the historical events differ, or if it is possible to talk about a methodological similarities in terms of historiography.

Keywords: Ahmed Cevdet Pasha, Fatma Aliye, historiography, methodology

Procedia PDF Downloads 232
407 Synthesis, Characterization and Photocatalytic Activity of Electrospun Zinc and/or Titanium Oxide Nanofibers for Methylene Blue Degradation

Authors: Zainab Dahrouch, Beatrix Petrovičová, Claudia Triolo, Fabiola Pantò, Angela Malara, Salvatore Patanè, Maria Allegrini, Saveria Santangelo

Abstract:

Synthetic dyes dispersed in water cause environmental damage and have harmful effects on human health. Methylene blue (MB) is broadly used as a dye in the textile, pharmaceutical, printing, cosmetics, leather, and food industries. The complete removal of MB is difficult due to the presence of aromatic rings in its structure. The present study is focused on electrospun nanofibers (NFs) with engineered architecture and surface to be used as catalysts for the photodegradation of MB. Ti and/or Zn oxide NFs are produced by electrospinning precursor solutions with different Ti: Zn molar ratios (from 0:1 to 1:0). Subsequent calcination and cooling steps are operated at fast rates to generate porous NFs with capture centers to reduce the recombination rate of the photogenerated charges. The comparative evaluation of the NFs as photocatalysts for the removal of MB from an aqueous solution with a dye concentration of 15 µM under UV irradiation shows that the binary (wurtzite ZnO and anatase TiO₂) oxides exhibit higher catalytic activity compared to ternary (ZnTiO₃ and Zn₂TiO₄) oxides. The higher band gap and lower crystallinity of the ternary oxides are responsible for their lower photocatalytic activity. It has been found that the optimal load for the wurtzite ZnO is 0.66 mg mL⁻¹, obtaining a degradation rate of 7.94.10⁻² min⁻¹. The optimal load for anatase TiO₂ is lower (0.33 mg mL⁻¹) and the corresponding rate constant (1.12×10⁻¹ min⁻¹) is higher. This finding (higher activity with lower load) is of crucial importance for the scaling up of the process on an industrial scale. Indeed, the anatase NFs outperform even the commonly used P25-TiO₂ benchmark. Besides, they can be reused twice without any regeneration treatment, with 5.2% and 18.7% activity decrease after second and third use, respectively. Thanks to the scalability of the electrospinning technique, this laboratory-scale study provides a perspective towards the sustainable large-scale manufacture of photocatalysts for the treatment of industry effluents.

Keywords: anatase, capture centers, methylene blue dye, nanofibers, photodegradation, zinc oxide

Procedia PDF Downloads 140
406 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 73
405 Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines

Authors: Abdul Matin, Muhammad Ajmal, Uzma Yunus, Noaman-ul Haq, Hafiz M. Shohaib, Ambreen G. Muazzam

Abstract:

Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system.

Keywords: carbon nanoparticles, carbon nanoparticles-methotrexate conjugates, human lung carcinoma cell lines, lactate dehydrogenase, methotrexate

Procedia PDF Downloads 289
404 Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines

Authors: Nima Samie, Sekaran Muniandy, Zahurin Mohamed, M. S. Kanthimathi

Abstract:

Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial.

Keywords: indolic compound, chemoprevention, crypt, azoxymethane, colon cancer

Procedia PDF Downloads 336
403 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol

Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine

Abstract:

Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.

Keywords: biopolymres, drug delivery, hydrogels, tramadol

Procedia PDF Downloads 341
402 Application of Gold Nanorods in Cancer Photothermaltherapy

Authors: Mehrnaz Mostafavi

Abstract:

Lung cancer is one of the most harmful forms of cancer. The long-term survival rate of lung cancer patients treated by conventional modalities such as surgical resection, radiation, and chemotherapy remains far from satisfactory. Systemic drug delivery is rarely successful because only a limited amount of the chemotherapeutic drug targets lung tumor sites, even when administered at a high dose. Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest.Multimodal or combination therapy represents a promising new method to fight disease. Therefore, a combination of different therapeutic strategies may be the best alternative to improve treatment outcomes for lung cancer. Photothermal therapy was proposed as a novel approach to treatment. In this work, photothermal therapy with gold nanoparticles and near infrared laser (NIR) irradiation was investigated.Four types of small (<100nm), NIR absorbing gold nanoparticles (nanospheres, nanorods) were synthesized using wet chemical methods and characterized by transmission electron microscopy, dynamic light scattering and UV-vis spectroscopy. Their synthesis and properties were evaluated, to determine their feasibility as a photothermal agent for clinical applications. In vitro cellular uptake studies of the nanoparticles into lung cancer cell lines was measured using light scattering microscopy.Small gold nanorods had good photothermal properties and the greatest cellular uptake, and were used in photothermal studies. Under 4W laser irradiation, an increase in temperature of 10°C and decrease in cell viability of up to 80% were obtained.

Keywords: photothermal, therapy, cancer, gold nanorods

Procedia PDF Downloads 231
401 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.

Keywords: plastic waste, graphene oxide, dye, adsorption

Procedia PDF Downloads 69
400 De-Pigmentary Effect of Ayurvedic Treatment on Hyper-Pigmentation of Skin Due to Chloroquine: A Case Report

Authors: Sunil Kumar, Rajesh Sharma

Abstract:

Toxic epidermal necrolysis, pruritis, rashes, lichen planus like eruption, hyper pigmentation of skin are rare toxic effects of choloroquine used over a long time. Skin and mucus membrane hyper pigmentation is generally of a bluish black or grayish color and irreversible after discontinuation of the drug. According to Ayurveda, Dushivisha is the name given to any poisonous substance which is not fully endowed with the qualities of poison by nature (i.e. it acts as an impoverished or weak poison) and because of its mild potency, it remains in the body for many years causing various symptoms, one among them being discoloration of skin.The objective of this case report is to investigate the effect of Ayurvedic management of chloroquine induced hyper-pigmentation on the line of treatment of Dushivisha. Case Report: A 26-year-old female was suffering from hyper-pigmentation of the skin over the neck, forehead, temporo-mandibular joints, upper back and posterior aspect of both the arms since 8 years had history of taking Chloroquine came to Out Patient Department of National Institute of Ayurveda, Jaipur, India in Jan. 2015. The routine investigations (CBC, ESR, Eosinophil count) were within normal limits. Punch biopsy skin studied for histopathology under hematoxylin and eosin staining showed epidermis with hyper-pigmentation of the basal layer. In the papillary dermis as well as deep dermis there were scattered melanophages along with infiltration by mononuclear cells. There was no deposition of amyloid-like substances. These histopathological findings were suggestive of Chloroquine induced hyper-pigmentation. The case was treated on the line of treatment of Dushivisha and was given Vamana and Virechana (therapeutic emesis and purgation) every six months followed by Snehana karma (oleation therapy) with Panchatikta Ghrit and Swedana (sudation). Arogyavardhini Vati -1 g, Dushivishari Vati 500 mg, Mahamanjisthadi Quath 20 ml were given twelve hourly and Aragwadhadi Quath 25 ml at bed time orally. The patient started showing lightening of the pigments after six months and almost complete remission after 12 months of the treatment. Conclusion: This patient presented with the Dushivisha effect of Chloroquineandwas administered two relevant procedures from Panchakarma viz. Vamana and Virechana. Both Vamana and Virechanakarma here referred to Shodhana karma (purification procedures) eliminates accumulated toxins from the body. In this process, oleation dislodge the toxins from the tissues and sudation helps to bring them to the alimentary tract. The line of treatment did not target direct hypo pigmentary effects; rather aimed to eliminate the Dushivisha. This gave promising results in this condition.

Keywords: Ayurveda, chloroquine, Dushivisha, hyper-pigmentation

Procedia PDF Downloads 221
399 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 300
398 Effect of Mistranslating tRNA Alanine on Polyglutamine Aggregation

Authors: Sunidhi Syal, Rasangi Tennakoon, Patrick O'Donoghue

Abstract:

Polyglutamine (polyQ) diseases are a group of diseases related to neurodegeneration caused by repeats of the amino acid glutamine (Q) in the DNA, which translates into an elongated polyQ tract in the protein. The pathological explanation is that the polyQ tract forms cytotoxic aggregates in the neurons, leading to their degeneration. There are no cures or preventative efforts established for these diseases as of today, although the symptoms of these diseases can be relieved. This study specifically focuses on Huntington's disease, which is a type of polyQ disease in which aggregation is caused by the extended cytosine, adenine, guanine (CUG) codon repeats in the huntingtin (HTT) gene, which encodes for the huntingtin protein. Using this principle, we attempted to create six models, which included mutating wildtype tRNA alanine variant tRNA-AGC-8-1 to have glutamine anticodons CUG and UUG so serine is incorporated at glutamine sites in poly Q tracts. In the process, we were successful in obtaining tAla-8-1 CUG mutant clones in the HTTexon1 plasmids with a polyQ tract of 23Q (non-pathogenic model) and 74Q (disease model). These plasmids were transfected into mouse neuroblastoma cells to characterize protein synthesis and aggregation in normal and mistranslating cells and to investigate the effects of glutamines replaced with alanines on the disease phenotype. Notably, we observed no noteworthy differences in mean fluorescence between the CUG mutants for 23Q or 74Q; however, the Triton X-100 assay revealed a significant reduction in insoluble 74Q aggregates. We were unable to create a tAla-8-1 UUG mutant clone, and determining the difference in the effects of the two glutamine anticodons may enrich our understanding of the disease phenotype. In conclusion, by generating structural disruption with the amino acid alanine, it may be possible to find ways to minimize the toxicity of Huntington's disease caused by these polyQ aggregates. Further research is needed to advance knowledge in this field by identifying the cellular and biochemical impact of specific tRNA variants found naturally in human genomes.

Keywords: Huntington's disease, polyQ, tRNA, anticodon, clone, overlap PCR

Procedia PDF Downloads 19
397 Polymer Mediated Interaction between Grafted Nanosheets

Authors: Supriya Gupta, Paresh Chokshi

Abstract:

Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.

Keywords: clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory

Procedia PDF Downloads 239
396 Hepatocyte-Intrinsic NF-κB Signaling Is Essential to Control a Systemic Viral Infection

Authors: Sukumar Namineni, Tracy O'Connor, Ulrich Kalinke, Percy Knolle, Mathias Heikenwaelder

Abstract:

The liver is one of the pivotal organs in vertebrate animals, serving a multitude of functions such as metabolism, detoxification and protein synthesis and including a predominant role in innate immunity. The innate immune mechanisms pertaining to liver in controlling viral infections have largely been attributed to the Kupffer cells, the locally resident macrophages. However, all the cells of liver are equipped with innate immune functions including, in particular, the hepatocytes. Hence, our aim in this study was to elucidate the innate immune contribution of hepatocytes in viral clearance using mice lacking Ikkβ specifically in the hepatocytes, termed IkkβΔᴴᵉᵖ mice. Blockade of Ikkβ activation in IkkβΔᴴᵉᵖ mice affects the downstream signaling of canonical NF-κB signaling by preventing the nuclear translocation of NF-κB, an important step required for the initiation of innate immune responses. Interestingly, infection of IkkβΔᴴᵉᵖ mice with lymphocytic choriomeningitis virus (LCMV) led to strongly increased hepatic viral titers – mainly confined in clusters of infected hepatocytes. This was due to reduced interferon stimulated gene (ISG) expression during the onset of infection and a reduced CD8+ T-cell-mediated response. Decreased ISG production correlated with increased liver LCMV protein and LCMV in isolated hepatocytes from IkkβΔᴴᵉᵖ mice. A similar phenotype was found in LCMV-infected mice lacking interferon signaling in hepatocytes (IFNARΔᴴᵉᵖ) suggesting a link between NFkB and interferon signaling in hepatocytes. We also observed a failure of interferon-mediated inhibition of HBV replication in HepaRG cells treated with NF-kB inhibitors corroborating our initial findings with LCMV infections. Collectively, these results clearly highlight a previously unknown and influential role of hepatocytes in the induction of innate immune responses leading to viral clearance during a systemic viral infection with LCMV-WE.

Keywords: CD8+ T cell responses, innate immune mechanisms in the liver, interferon signaling, interferon stimulated genes, NF-kB signaling, viral clearance

Procedia PDF Downloads 176