Search results for: experimental theater
4675 Embracing Failure and Experimentation: A Journey through Artistic Residency
Authors: Hala Ali
Abstract:
In the evolving landscape of contemporary art, the value of failure and experimentation plays a central role in reshaping artistic research. This paper explores an artistic residency where the focus shifted from traditional practices of ink on canvas to performance art using the human body as a medium of expression. This residency emphasized uncertainty, experimentation, and emotional expression as the core of the process. Through collaboration between a calligrapher and a visual artist, the performance engaged themes of seduction, silence, and the transition between reality and abstraction. In alignment with experimental art practices, the process itself became the artwork, embracing moments of failure and disruption as key components of creative exploration. This research integrates theories from neuroscience, psychology, and artistic failure, drawing on the insights of thinkers like John Cage, Samuel Beckett, and Cornelius Cardew to further contextualize the residency’s impact.Keywords: embodied art, emotional communication, mindfulness in art, nonverbal communication, performance art
Procedia PDF Downloads 224674 An Experimental Study to Control Single Droplet by Actuating Waveform with Preliminary and Suppressing Vibration
Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi
Abstract:
For advancing the experiment system standard of Inkjet printer that is being developed, the actual natural period, fire limitation number in droplet weight measurement and observation distance in droplet velocity measurement was investigated. In another side, the study to control the droplet volume in inkjet printer with negative actuating waveform method is still limited. Therefore, the effect of negative waveform with preliminary and suppressing vibration addition on the droplet formation process, droplet shape, volume and velocity were evaluated. The different voltage and print-head temperature were exerted to obtain the optimum preliminary and suppressing vibration. The mechanism of different phenomenon from each waveform was also discussed.
Keywords: inkjet printer, DoD, waveform, preliminary and suppressing vibration
Procedia PDF Downloads 2394673 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation
Authors: Ahmed M. Eltohamy
Abstract:
In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.Keywords: geogrid reinforcement, prestress, strip footing, bearing capacity
Procedia PDF Downloads 3074672 The Effect of Raindrop Kinetic Energy on Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity
Procedia PDF Downloads 5054671 An Ab Initio Study of Delafossite Transparent Conductive Oxides Cu(In, Ga)O2 and Absorbers Films Cu(In, Ga)S2 in Solar-Cell
Authors: Mokdad Sakhri, Youcef Bouhadda
Abstract:
Thin film chalcopyrite technology is thus nowadays a solid candidate for photovoltaic cells. The currently used window layer for the solar cell Cu(In,Ga)S2 is our interest point in this work. For this purpose, we have performed a first-principles study of structural, electronic and optical properties for both delafossite transparent conductive oxides Cu (In, Ga)O2 and absorbers films Cu(In,Ga)S2. The calculations have been carried out within the local density functional (LDA) and generalized gradient approximations (GGA) combined with the hubbard potential using norm-conserving pseudopotentials and a plane-wave basis with ABINIT code. We have found the energy gap is :1.6, 2.53, 3.6, 3.8 eV for CuInS2, CuGaS2, CuInO2 and CuGaO2 respectively. The results are in good agreement with experimental results.Keywords: ABINIT code, DFT, electronic and optical properties, solar-cell absorbers, delafossite transparent conductive oxides
Procedia PDF Downloads 5684670 Damage Assessment Based on Full-Polarimetric Decompositions in the 2017 Colombia Landslide
Authors: Hyeongju Jeon, Yonghyun Kim, Yongil Kim
Abstract:
Synthetic Aperture Radar (SAR) is an effective tool for damage assessment induced by disasters due to its all-weather and night/day acquisition capability. In this paper, the 2017 Colombia landslide was observed using full-polarimetric ALOS/PALSAR-2 data. Polarimetric decompositions, including the Freeman-Durden decomposition and the Cloude decomposition, are utilized to analyze the scattering mechanisms changes before and after-landslide. These analyses are used to detect the damaged areas induced by the landslide. Experimental results validate the efficiency of the full polarimetric SAR data since the damaged areas can be well discriminated. Thus, we can conclude the proposed method using full polarimetric data has great potential for damage assessment of landslides.Keywords: Synthetic Aperture Radar (SAR), polarimetric decomposition, damage assessment, landslide
Procedia PDF Downloads 3904669 Singularization: A Technique for Protecting Neural Networks
Authors: Robert Poenaru, Mihail Pleşa
Abstract:
In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.Keywords: machine learning, ANE, CNN, security
Procedia PDF Downloads 144668 Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature
Authors: Sung-Uk Wee, Chang-Sung Seok, Jae-Mean Koo, Jeong-Min Lee
Abstract:
Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature.Keywords: gas turbine blade, tensile test, fatigue life, stress-strain
Procedia PDF Downloads 4774667 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller
Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi
Abstract:
The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel
Procedia PDF Downloads 2134666 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters
Authors: Chii-Dong Ho, Jian-Har Chen
Abstract:
The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters
Procedia PDF Downloads 84665 Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization
Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia
Abstract:
Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm.Keywords: low-cost adsorbents, fig leaves, full factorial design, phenol, biosorption
Procedia PDF Downloads 974664 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum
Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei
Abstract:
An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.Keywords: dislocation density, quasi-elastic release, wave profile, shock wave
Procedia PDF Downloads 2824663 Characteristics of Asphalt Mixtures with Cocoa Shell Ash as Filler
Authors: Muhammad Nur Hidayat, Muksalmina, Chairul Fajar
Abstract:
An alternative to improve the quality of asphalt as a pavement material is to use modified asphalt with the addition of cocoa shell ash as a filler. This research aims to determine the effect of asphalt mixture and cocoa shell ash after testing the physical properties of asphalt. The method used was experimental by testing the physical properties of asphalt. The results showed that the optimum asphalt content of the cocoa husk ash mixture was 2%, with an asphalt penetration value of 60.03 mm. The result of the asphalt softening point test was 51.0°C. Asphalt ductility test results in 144 cm. Asphalt specific gravity test result 1.076 gr/ml. Asphalt weight loss test results in 0.0183%. In conclusion, cocoa shell ash has an effect on asphalt characteristics, namely increasing stability, flexibility and fatigue resistance.Keywords: cocoa husk ash, asphalt characteristics, physical properties testing, filler
Procedia PDF Downloads 374662 Studies on Separation of Scandium from Sulfate Environment Using Ion Exchange Technique
Authors: H. Hajmohammadi , A. H. Jafari, M. Eskandari Nasab
Abstract:
The ion exchange method was used to assess the absorption of sulfate media from laboratory-grade materials. The Taguchi method was employed for determining the optimum conditions for scandium adsorption. Results show that optimum conditions for scandium adsorption from sulfate were obtained by Purolite C100 cationic resin in 0.1 g/l sulfuric acid and scandium concentration of 2 g/l at 25 °C. Studies also showed that lowering H₂SO₄ concentration and aqueous phase temperature leads to an increase in Sc adsorption. Visual Minteq software was used to ascertain the various possible cation types and the effect of concentration of scandium ion species on scandium adsorption by cationic resins. The simulation results of the above software show that scandium ion species are often cationic species that are consistent with experimental data.Keywords: scandium, ion exchange resin, simulation, leach copper
Procedia PDF Downloads 1424661 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 4384660 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections
Authors: N. Zhang, J. S. Kuang, S. Mogili
Abstract:
To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.Keywords: large-scale tests, RC beam-column knee joints, seismic performance, shear strength
Procedia PDF Downloads 2494659 Study on Roll Marks of Stainless Steel in Rolling Mill
Authors: Cai-Wan Chang-Jian, Han-Ting Tsai
Abstract:
In the processing industry of metal forming, rolling is the most used method of processing. In a cold rolling factory of stainless steel, there occurs a product defect on temper rolling process within cold rolling. It is called 'roll marks', which is a phenomenon of undesirable flatness problem. In this research, we performed a series of experimental measurements on the roll marks, and we used optical sensors to measure it and compared the vibration frequency of roll marks with the vibration frequency of key components in the skin pass mill. We found there is less correlation between the above mentioned data. Finally, we took measurement on the motor driver in rolling mill. We found that the undulation frequency of motor could match with the frequency of roll marks, and then we have confirmed that the motor’s undulation caused roll marks.Keywords: roll mark, plane strain, rolling mill, stainless steel
Procedia PDF Downloads 4544658 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management
Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag
Abstract:
In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD
Procedia PDF Downloads 3934657 Ab initio Simulation of Y2O3 -Doped Cerium Using Heyd–Scuseria–Ernzerhof HSE Hybrid Functional and DFT+U Approaches
Authors: M. Taibeche, L. Guerbous, M. Kechouane, R. Nedjar, T. Zergoug
Abstract:
It is known that Y2O3 Material is the most important among the sesquioxides within the general class of refractory ceramics. Indeed, this compound has many applications such as sintering optical windows, components for rare-earth doped lasers as well as inorganic scintillators in the detection scintillation. In particular Eu2+ and Ce3+ are favored dopants in many the scintillators due to its allowed optical 5d-4f transition. In this work, we present new results concerning structural and electronic properties of Ce-doped Y2O3, investigated by density functional theory (DFT), using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional and DFT+U two approaches. When, we compared the results from the two methods we obtain a good agreement available experimental data. Furthermore, the effect of cerium on the material has also been studied and discussed in the same framework.Keywords: DFT, vienne ab initio simulation packages, scintillators, Heyd–Scuseria–Ernzerhof (HSE) hybrid functional
Procedia PDF Downloads 5184656 Experimental Measurements of Fire Retardants on Plywood at Fire Test
Authors: Gisele C. A. Martins, Leonardo A. Marcolin, Laurenn B. de Macedo, Francisco A. Rocco Lahr, Carlito Calil Jr
Abstract:
The use and development of wood composite materials increased in the past few years. However, in Brazil there are some restrictions on these products regarding their use since it could be considered a potential risk in a fire situation. Thus, becomes evident the need for research aiming to fit these in safety standards. This study aims to evaluate the efficiency of two new fire retardant products produced by a Brazilian industry. Tests were performed on plywood panels of Pinus spp previously immersed, varying the products concentrations and compared with untreated samples. The test used to evaluate the flame spread in a panel was the modified Schlyter test. The product in question was proved efficient, before and after shutting off the burner. Comparing panels with the panels without treatment, there was a decrease of 400% of the height of the flame spread on the treated ones.Keywords: fire retardant, flame spread, plywood, wood-based material
Procedia PDF Downloads 4344655 Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine
Authors: Hasan Aydogan
Abstract:
The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another.Keywords: bioethanol, biodiesel, safflower, combustion characteristics
Procedia PDF Downloads 5244654 Dry High Speed Orthogonal Turning of Ti-6Al-4V Titanium Alloy
Authors: M. Benghersallah, G. List, G. Sutter
Abstract:
The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000, and 1200 m/min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.Keywords: titanium alloy, dry hjgh speed turning, wear insert, MQL technique
Procedia PDF Downloads 5554653 The Effect of the Water and Fines Content on Shear Strength of Soils
Authors: Ouledja Abdessalam
Abstract:
This work Contains an experimental study of the behavior of Chlef sand under the effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts, and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), The water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriately used to study the shear strength of soils.Keywords: shear strength, sand, silt, contractancy, dilatancy, friction angle, cohesion, fines content
Procedia PDF Downloads 5054652 Towards a Resources Provisioning for Dynamic Workflows in the Cloud
Authors: Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem
Abstract:
Cloud computing offers a new model of service provisioning for workflow applications, thanks to its elasticity and its paying model. However, it presents various challenges that need to be addressed in order to be efficiently utilized. The resources provisioning problem for workflow applications has been widely studied. Nevertheless, the existing works did not consider the change in workflow instances while they are being executed. This functionality has become a major requirement to deal with unusual situations and evolution. This paper presents a first step towards the resources provisioning for a dynamic workflow. In fact, we propose a provisioning algorithm which minimizes the overall workflow execution cost, while meeting a deadline constraint. Then, we extend it to support the dynamic adding of tasks. Experimental results show that our proposed heuristic demonstrates a significant reduction in resources cost by using a consolidation process.Keywords: cloud computing, resources provisioning, dynamic workflow, workflow applications
Procedia PDF Downloads 2954651 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 3144650 The Impact of an Interactive E-Book on Mathematics Reading and Spatial Ability in Middle School Students
Authors: Abebayehu Yohannes, Hsiu-Ling Chen, Chiu-Chen Chang
Abstract:
Mathematics reading and spatial ability are important learning components in mathematics education. However, many students struggle to understand real-world problems and lack the spatial ability to form internal imagery. To cope with this problem, in this study, an interactive e-book was developed. The result indicated that both groups had a significant increase in the mathematics reading ability test, and a significant difference was observed in the overall mathematics reading score in favor of the experimental group. In addition, the interactive e-book learning mode had significant impacts on students’ spatial ability. It was also found that the richness of content with visual and interactive elements provided in the interactive e-book enhanced students’ satisfaction with the teaching material.Keywords: interactive e-books, spatial ability, mathematics reading, satisfaction, three view
Procedia PDF Downloads 1924649 Seismic Analysis of URM Buildings in South Africa
Authors: Trevor N. Haas, Thomas van der Kolf
Abstract:
South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.Keywords: URM, seismic analysis, FEM, Cape Town
Procedia PDF Downloads 3674648 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine
Authors: Joseph Soliman, Youssef Attia, Khairy Megalla
Abstract:
The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.Keywords: stirling engine, solar energy, new energy, dynamic motion
Procedia PDF Downloads 4234647 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes
Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng
Abstract:
The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium
Procedia PDF Downloads 3524646 Improvement of Soft Clay Soil with Biopolymer
Authors: Majid Bagherinia
Abstract:
Lime and cement are frequently used as binders in the Deep Mixing Method (DMM) to improve soft clay soils. The most significant disadvantages of these materials are carbon dioxide emissions and the consumption of natural resources. In this study, three different biopolymers, guar gum, locust bean gum, and sodium alginate, were investigated for the improvement of soft clay using DMM. In the experimental study, the effects of the additive ratio and curing time on the Unconfined Compressive Strength (UCS) of stabilized specimens were investigated. According to the results, the UCS values of the specimens increased as the additive ratio and curing time increased. The most effective additive was sodium alginate, and the highest strength was obtained after 28 days.Keywords: deep mixing method, soft clays, ground improvement, biopolymers, unconfined compressive strength
Procedia PDF Downloads 80