Search results for: conditional restricted boltzmann machine (CRBM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3643

Search results for: conditional restricted boltzmann machine (CRBM)

973 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 227
972 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 362
971 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: dexel, process stability, material removal, milling

Procedia PDF Downloads 524
970 The Development of Monk’s Food Bowl Production on Occupational Health Safety and Environment at Work for the Strength of Rattanakosin Local Wisdom

Authors: Thammarak Srimarut, Witthaya Mekhum

Abstract:

This study analysed and developed a model for monk’s food bowl production on occupational health safety and environment at work for the encouragement of Rattanakosin local wisdom at Banbart Community. The process of blowpipe welding was necessary to produce the bowl which was very dangerous or 93.59% risk. After the employment of new sitting posture, the work risk was lower 48.41% or moderate risk. When considering in details, it was found that: 1) the traditional sitting posture could create work risk at 88.89% while the new sitting posture could create the work risk at 58.86%. 2) About the environmental pollution, with the traditional sitting posture, workers exposed to the polluted fume from welding at 61.11% while with the new sitting posture workers exposed to the polluted fume from welding at 40.47%. 3) On accidental risk, with the traditional sitting posture, workers exposed to the accident from welding at 94.44% while with the new sitting posture workers exposed to the accident from welding at 62.54%.

Keywords: occupational health safety, environment at work, Monk’s food bowl, machine intelligence

Procedia PDF Downloads 435
969 Prevalence of Positive Serology for Celiac Disease in Children With Autism Spectrum Disorder

Authors: A. Venkatakrishnan, M. Juneja, S. Kapoor

Abstract:

Background: Gastrointestinal dysfunction is an emerging co morbidity seen in autism and may further strengthen the association between autism and celiac disease. This is supported by increased rates (22-70%) of gastrointestinal symptoms like diarrhea, constipation, abdominal discomfort/pain, and gastrointestinal inflammation in children with the etiology of autism is still elusive. In addition to genetic factors, environmental factors such as toxin exposure, intrauterine exposure to certain teratogenic drugs, are being proposed as possible contributing factors in the etiology of Autism Spectrum Disorders (ASD) in cognizance with reports of increased gut permeability and high rates of gastrointestinal symptoms noted in children with ASD, celiac disease has also been proposed as a possible etiological factor. Despite insufficient evidence regarding the benefit of restricted diets in Autism, GFD has been promoted as an alternative treatment for ASD. This study attempts to discern any correlation between ASD and celiac disease. Objective: This cross sectional study aims to determine the proportion of celiac disease in children with ASD. Methods: Study included 155 participants aged 2-12 yrs, diagnosed as ASD as per DSM-5 attending the child development center at a tertiary care hospital in Northern India. Those on gluten free diet or having other autoimmune conditions were excluded. A detailed Performa was filled which included sociodemographic details, history of gastrointestinal symptoms, anthropometry, systemic examination, and pertinent psychological testing was done using was assessed using Developmental Profile-3(DP-3) for Developmental Quotient, Childhood Autism Rating Scale-2 (CARS-2) for severity of ASD, Vineland Adaptive Behavior Scales (VABS) for adaptive behavior, Child Behavior Checklist (CBCL) for behavioral problems and BAMBI (Brief Autism Mealtime Behavior Scales) for feeding problems. Screening for celiac was done by TTG-IgA levels, and total serum IgA levels were measured to exclude IgA deficiency. Those with positive screen were further planned for HLA typing and endoscopic biopsy. Results: A total of 155 cases were included, out of which 5 had low IgA levels and were hence excluded from the study. The rest 150 children had TTG levels below the ULN and normal total serum IgA level. History of Gastrointestinal symptoms was present in 51 (34%) cases abdominal pain was the most frequent complaint (16.6%), followed by constipation (12.6%). Diarrhea was seen in 8 %. Gastrointestinal symptoms were significantly more common in children with ASD above 5 yrs (p-value 0.006) and those who were verbal (p = 0.000). There was no significant association between socio-demographic factors, anthropometric data, or severity of autism with gastrointestinal symptoms. Conclusion: None of the150 patients with ASD had raised TTG levels; hence no association was found between ASD and celiac disease. There is no justification for routine screening for celiac disease in children with ASD. Further studies are warranted to evaluate association of Non Celiac Gluten Sensitivity with ASD and any role of gluten-free diet in such patients.

Keywords: autism, celiac, gastrointestinal, gluten

Procedia PDF Downloads 119
968 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 115
967 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 208
966 A Case Study of Brownfield Revitalization in Taiwan

Authors: Jen Wang, Wei-Chia Hsu, Zih-Sin Wang, Ching-Ping Chu, Bo-Shiou Guo

Abstract:

In the late 19th century, the Jinguashi ore deposit in northern Taiwan was discovered, and accompanied with flourishing mining activities. However, tons of contaminants including heavy metals, sulfur dioxide, and total petroleum hydrocarbons (TPH) were released to surroundings and caused environmental problems. Site T was one of copper smelter located on the coastal hill near Jinguashi ore deposit. In over ten years of operation, variety contaminants were emitted that it polluted the surrounding soil and groundwater quality. In order to exhaust fumes produced from smelting process, three stacks were built along the hill behind the factory. The sediment inside the stacks contains high concentration of heavy metals such as arsenic, lead, copper, etc. Moreover, soil around the discarded stacks suffered a serious contamination when deposition leached from the ruptures of stacks. Consequently, Site T (including the factory and its surroundings) was declared as a pollution remediation site that visiting the site and land-use activities on it are forbidden. However, the natural landscape and cultural attractions of Site T are spectacular that it attracts a lot of visitors annually. Moreover, land resources are extremely precious in Taiwan. In addition, Taiwan Environmental Protection Administration (EPA) is actively promoting the contaminated land revitalization policy. Therefore, this study took Site T as case study for brownfield revitalization planning to the limits of activate and remediate the natural resources. Land-use suitability analysis and risk mapping were applied in this study to make appropriate risk management measures and redevelopment plan for the site. In land-use suitability analysis, surrounding factors into consideration such as environmentally sensitive areas, biological resources, land use, contamination, culture, and landscapes were collected to assess the development of each area; health risk mapping was introduced to show the image of risk assessments results based on the site contamination investigation. According to land-use suitability analysis, the site was divided into four zones: priority area (for high-efficiency development), secondary area (for co-development with priority area), conditional area (for reusing existing building) and limited area (for Eco-tourism and education). According to the investigation, polychlorinated biphenyls (PCB), heavy metals and TPH were considered as target contaminants while oral, inhalation and dermal would be the major exposure pathways in health risk assessment. In accordance with health risk map, the highest risk was found in the southwest and eastern side. Based on the results, the development plan focused on zoning and land use. Site T was recommended be divides to public facility zone, public architectonic art zone, viewing zone, existing building preservation zone, historic building zone, and cultural landscape zone for various purpose. In addition, risk management measures including sustained remediation, extinguish exposure and administration management are applied to ensure particular places are suitable for visiting and protect the visitors’ health. The consolidated results are corroborated available by analyzing aspects of law, land acquired method, maintenance and management and public participation. Therefore, this study has a certain reference value to promote the contaminated land revitalization policy in Taiwan.

Keywords: brownfield revitalization, land-use suitability analysis, health risk map, risk management

Procedia PDF Downloads 182
965 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle

Authors: M. Khairudin

Abstract:

This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.

Keywords: lathe spindle, QFT, robust control, system identification

Procedia PDF Downloads 542
964 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 221
963 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: distillation, machine learning, neural networks, quantization

Procedia PDF Downloads 324
962 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen

Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan

Abstract:

A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.

Keywords: analytic network process, booking amount, risk priority number, supply chain performance

Procedia PDF Downloads 293
961 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Keywords: textile, cotton, pressure, venous ulcers, elastic

Procedia PDF Downloads 359
960 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 72
959 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 291
958 Optimization of Surface Roughness by Taguchi’s Method for Turning Process

Authors: Ashish Ankus Yerunkar, Ravi Terkar

Abstract:

Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.

Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer

Procedia PDF Downloads 366
957 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller

Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.

Abstract:

This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.

Keywords: wind, grid, PMSG, MPPT, OTSR

Procedia PDF Downloads 359
956 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes

Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun

Abstract:

The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.

Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration

Procedia PDF Downloads 81
955 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution

Authors: Haiyan Wu, Ying Liu, Shaoyun Shi

Abstract:

Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.

Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction

Procedia PDF Downloads 134
954 Experimental Investigation of Folding of Rubber-Filled Circular Tubes on Energy Absorption Capacity

Authors: MohammadSadegh SaeediFakher, Jafar Rouzegar, Hassan Assaee

Abstract:

In this research, mechanical behavior and energy absorption capacity of empty and rubber-filled brazen circular tubes under quasi-static axial loading are investigated, experimentally. The brazen tubes were cut out of commercially available brazen circular tubes with the same length and diameter. Some of the specimens were filled with rubbers with three different shores and also, an empty tube was prepared. The specimens were axially compressed between two rigid plates in a quasi-static process using a Zwick testing machine. Load-displacement diagrams and energy absorption of the tested tubes were extracted from experimental data. The results show that filling the brazen tubes with rubber causes those to absorb more energy and the energy absorption of specimens are increased by increasing the shore of rubbers. In comparison to the empty tube, the first fold for the rubber-filled tubes occurs at lower load and it can be concluded that the rubber-filled tubes are better energy absorbers than the empty tubes. Also, in contrast with the empty tubes, the tubes that were filled with lower rubber shore deform asymmetrically.

Keywords: axial compression, quasi-static loading, folding, energy absorbers, rubber-filled tubes

Procedia PDF Downloads 428
953 Investigating Translations of Websites of Pakistani Public Offices

Authors: Sufia Maroof

Abstract:

This empirical study investigated the web-translations of five Pakistani public offices (FPSC, FIA, HEC, USB, and Ministry of Finance) offering Urdu tab as an option to access information on their official websites. Triangulation of quantitative and qualitative research design informed the researcher of the semantic, lexical and syntactic caveats in these translations. The study hypothesized that majority of the Pakistani population is oblivious of the Supreme Court’s amendments in language policy concerning national and official language; hence, Urdu web-translations of the public departments have not been accessed effectively. Firstly, the researcher conducted an online survey, comprising of two sections, close ended and short answer based questions. Secondly, the researcher compiled corpus of the five selected websites in a tabular form to compare the data. Thirdly, the administrators of the departments had been contacted regarding the methods of translation and the expertise of the personnel involved. The corpus was assessed for TQA after examining the lexical, semantic, syntactical and technical alignment inaccuracies and imperfections. The study suggests the public offices to invest in their Urdu webs by either hiring expert translators or engaging expertise of a translation agency for this project to offer quality translation to public.

Keywords: machine translations, public offices, Urdu translations, websites

Procedia PDF Downloads 126
952 Applying a SWOT Analysis to Inform the Educational Provision of Learners with Autism Spectrum Disorders

Authors: Claire Sciberras

Abstract:

Introduction: Autism Spectrum Disorder (ASD) has become recognized as being the most common childhood neurological condition. Indeed, numerous studies demonstrate an increase in the prevalence rate of children diagnosed with ASD. Concurrent with these findings, the European Agency for Special Needs and Inclusive Education reported a similar escalating tendency in prevalence also in Malta. Such an increase within the educational context in Malta has led the European Agency to call for increased support within educational settings in Malta. However, although research has addressed the positive impact of mainstream education on learners with ASD, empirical studies vis-à-vis the internal and external strengths and weaknesses present within the support provided in mainstream settings in Malta is distinctly limited. In light of the aforementioned argument, Malta would benefit from research which focuses on analysing the strengths, weaknesses, opportunities, and threats (SWOTs) which are present within the support provision of learners with ASD in mainstream primary schools. Such SWOT analysis is crucial as lack of appropriate opportunities might jeopardize the educational and social experiences of persons with ASD throughout their schooling. Methodology: A mixed methodological approach would be well suited to examine the provision of support of learners with ASD as the combination of qualitative and quantitative approaches allows researchers to collect a comprehensive range of data and validate their results. Hence, it is intended that questionnaires will be distributed to all the stakeholders involved so as to acquire a broader perspective to be collected from a wider group who provide support to students with ASD across schools in Malta. Moreover, the use of a qualitative approach in the form of interviews with a sample group will be implemented. Such an approach will be considered as it would potentially allow the researcher to gather an in-depth perspective vis-à-vis to the nature of the services which are currently provided to learners with ASD. The intentions of the study: Through the analysis of the data collected vis-à-vis to the SWOTs within the provision of support of learners with ASD it is intended that; i) a description in regards to the educational provision for learners with ASD within mainstream primary schools in Malta in light of the experiences and perceptions of the stakeholders involved will be acquired; ii) an analysis of the SWOTs which exist within the services for learners with ASD in primary state schools in Malta is carried out and iii) based on the SWOT analysis, recommendations that can lead to improvements in practice in the field of ASD in Malta and beyond will be provided. Conclusion: Due to the heterogeneity of individuals with ASD which spans across several deficits related to the social communication and interaction domain and also across areas linked to restricted, repetitive behavioural patterns, educational settings need to alter their standards according to the needs of their students. Thus, the standards established by schools throughout prior phases do not remain applicable forever, and therefore these need to be reviewed periodically in accordance with the diversities and the necessities of their learners.

Keywords: autism spectrum disorders, mainstream educational settings, provision of support, SWOT analysis

Procedia PDF Downloads 190
951 Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine

Authors: Saim Iftikhar Awan, Farhan Ali

Abstract:

Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.

Keywords: computational analysis, power efficiency, wind energy, wind turbine

Procedia PDF Downloads 157
950 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 192
949 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts

Authors: Nety Trisnawaty, Mirna Febriani

Abstract:

The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.

Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts

Procedia PDF Downloads 278
948 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 91
947 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy

Procedia PDF Downloads 154
946 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 257
945 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 197
944 Age-Related Health Problems and Needs of Elderly People Living in Rural Areas in Poland

Authors: Anna Mirczak

Abstract:

Introduction: In connection with the aging of the population and the increase in the number of people with chronic illnesses, the priority objective for public health has become not only lengthening life, but also improving quality of life in older persons, as well as maintenance of their relative independence and active participation in social life. The most important determinant of a person’s quality of life is health. According to the literature, older people with chronic illness who live in rural settings are at greater risk for poor outcomes than their urban counterparts. Furthermore research characterizes the rural elderly as having a higher incidence of sickness, dysfunction, disability, restricted mobility, and acute and chronic conditions than their urban citizens. It is dictated by the overlapping certain specific socio-economic factors typical for rural areas which include: social and geography exclusion, limited access to health care centers, and low socioeconomic status. Aim of the study: The objective of this study was to recognize health status and needs of older people living in selected rural areas in Poland and evaluate the impacts of working in the farm on their health status. Material and methods: The study was performed personally, using interviews based on the structural questionnaires, during the period from March 2011 to October 2012. The group of respondents consisted 203 people aged 65 years and over living in selected rural areas in Poland. The analysis of collected research material was performed using the statistical package SPSS 19 for Windows. The level of significance for the tested the hypotheses assumed value of 0.05. Results: The mean age of participants was 75,5 years (SD=5,7) range from 65 to 94 years. Most of the interviewees had children (89.2%) and grandchildren (83.7) and lived mainly with family members (75.9%) mostly in double (46.8%) and triple (20.8%) household. The majority of respondents (71,9%) were physical working on the farm. At the time of interview, each of the respondents reported that they had been diagnosed with at least one chronic diseases by their GP. The most common were: hypertension (67,5%), osteoarthritis (44,8%), atherosclerosis (43,3%), cataract (40,4%), arrhythmia (28,6%), diabetes mellitus (19,7%) and stomach or duodenum ulcer diseases (17,2%).The number of diseases occurring of the sample was dependent on gender and age. Significant associations were observed between working on the farm and frequency of occurrence cardiovascular diseases, the gastrointestinal tract dysfunction and sensory disorders. Conclusions: The most common causes of disability among older citizens were: chronic diseases, malnutrition and complaints about access to health services (especially to cardiologist and an ophthalmologist). Health care access and health status are a particular concern in rural areas where the population is older, has lower education and income levels, and is more likely to be living in medically underserved areas than is the case in urban areas.

Keywords: ageing, health status, older people, rural

Procedia PDF Downloads 262