Search results for: artificial intelligence and genetic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5682

Search results for: artificial intelligence and genetic algorithms

3012 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 285
3011 Artificial Intelligence Impact on the Australian Government Public Sector

Authors: Jessica Ho

Abstract:

AI has helped government, businesses and industries transform the way they do things. AI is used in automating tasks to improve decision-making and efficiency. AI is embedded in sensors and used in automation to help save time and eliminate human errors in repetitive tasks. Today, we saw the growth in AI using the collection of vast amounts of data to forecast with greater accuracy, inform decision-making, adapt to changing market conditions and offer more personalised service based on consumer habits and preferences. Government around the world share the opportunity to leverage these disruptive technologies to improve productivity while reducing costs. In addition, these intelligent solutions can also help streamline government processes to deliver more seamless and intuitive user experiences for employees and citizens. This is a critical challenge for NSW Government as we are unable to determine the risk that is brought by the unprecedented pace of adoption of AI solutions in government. Government agencies must ensure that their use of AI complies with relevant laws and regulatory requirements, including those related to data privacy and security. Furthermore, there will always be ethical concerns surrounding the use of AI, such as the potential for bias, intellectual property rights and its impact on job security. Within NSW’s public sector, agencies are already testing AI for crowd control, infrastructure management, fraud compliance, public safety, transport, and police surveillance. Citizens are also attracted to the ease of use and accessibility of AI solutions without requiring specialised technical skills. This increased accessibility also comes with balancing a higher risk and exposure to the health and safety of citizens. On the other side, public agencies struggle with keeping up with this pace while minimising risks, but the low entry cost and open-source nature of generative AI led to a rapid increase in the development of AI powered apps organically – “There is an AI for That” in Government. Other challenges include the fact that there appeared to be no legislative provisions that expressly authorise the NSW Government to use an AI to make decision. On the global stage, there were too many actors in the regulatory space, and a sovereign response is needed to minimise multiplicity and regulatory burden. Therefore, traditional corporate risk and governance framework and regulation and legislation frameworks will need to be evaluated for AI unique challenges due to their rapidly evolving nature, ethical considerations, and heightened regulatory scrutiny impacting the safety of consumers and increased risks for Government. Creating an effective, efficient NSW Government’s governance regime, adapted to the range of different approaches to the applications of AI, is not a mere matter of overcoming technical challenges. Technologies have a wide range of social effects on our surroundings and behaviours. There is compelling evidence to show that Australia's sustained social and economic advancement depends on AI's ability to spur economic growth, boost productivity, and address a wide range of societal and political issues. AI may also inflict significant damage. If such harm is not addressed, the public's confidence in this kind of innovation will be weakened. This paper suggests several AI regulatory approaches for consideration that is forward-looking and agile while simultaneously fostering innovation and human rights. The anticipated outcome is to ensure that NSW Government matches the rising levels of innovation in AI technologies with the appropriate and balanced innovation in AI governance.

Keywords: artificial inteligence, machine learning, rules, governance, government

Procedia PDF Downloads 70
3010 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 37
3009 The Influence of the Aquatic Environment on Hematological Parameters in Cyprinus carpio

Authors: Andreea D. Șerban, Răzvan Mălăncuș, Mihaela Ivancia, Șteofil Creangă

Abstract:

Just as air influences the quality of life in the terrestrial environment, water, as a living environment, is one of great importance when it comes to the quality of life of underwater animals, which acquires an even higher degree of importance when analyzing underwater creatures as future products for human consumption. Thus, going beyond the ideal environment, in which all water quality parameters are permanently in perfect standards for reproduction, growth, and development of fish material and customizing this study to reality, it was demonstrated the importance of reproduction, development, and growth of biological material, necessary in the population fish farms, in the same environment to gain the maximum yield that a fish farm can offer. The biological material used was harvested from 3 fish farms located at great distances from each other to have environments with different parameters. The specimens were clinically healthy at 2 years of age. Thus, the differences in water quality parameters had effects on specimens from other environments, describing large curves in their evolution in new environments. Another change was observed in the new environment, the specimens contributing with the "genetic package" to its modification, tending to a balance of the parameters studied to the values in the environment in which they lived until the time of the experiment. The study clearly showed that adaptability to the environment in which an individual has developed and grown is not valid in environments with different parameters, resulting even in the fatality of one sample during the experiment. In some specimens, the values of the studied hematological parameters were halved after the transfer to the new environment, and in others, the same parameters were doubled. The study concludes that the specimens were adapted to the environment in which they developed and grew, their descendants having a higher value of heritability only in the initial environment. It is known that heritability is influenced 50% by the genetic package of the individual and 50% by the environment, by removing the value of the environment, the duration of improvement of characters of interest will be shorter and the maximum yield of fish farms can be achieved in a smaller period.

Keywords: environment, heritability, quality, water

Procedia PDF Downloads 170
3008 The National Socialist and Communist Propaganda Activities in the Turkish Press during the World War II

Authors: Asuman Tezcan Mirer

Abstract:

This proposed paper discusses nationalist socialist and communist propaganda struggles in the Turkish press during World War II. The paper aspires to analyze how government agencies directed and organized the Turkish press to prevent the "5th column" from influencing public opinion. During the Second World War, one of the most emphasized issues was propaganda and how Turkish citizens would be protected from the effects of disinformation. Istanbul became a significant headquarters for belligerent countries' intelligence services, and these services were involved in gathering intelligence and disseminating propaganda. The main motive of national socialist propaganda was "anti-communism" in Turkey. Subsidizing certain magazines, controlling German companies' advertisements and paper trade, spreading rumors, printing propaganda brochures, and showing German propaganda films are some tactics that the nationalist socialists applied before and during the Second World War. On the other hand, the communists targeted Turkish racist/ultra-nationalist groups and their publications, which were influenced by the Nazi regime. They were also involved in distributing Marxist publications, printing brochures, and broadcasting radio programs. This study composes of three parts. The first part describes the nationalist socialist and communist propaganda activities in Turkey during the Second World War. The second part addresses the debates over propaganda among selected newspapers representing different ideologies. Finally, the last part analyzes the Turkish government's press policy. It explains why the government allowed ideological debates in the press despite its authoritarian press policy and "active neutrality" stance in the international arena.

Keywords: propaganda, press, 5th column, World War II, Turkey

Procedia PDF Downloads 101
3007 Gene Distribution of CB1 Receptor rs2023239 in Thailand Cannabis Patients

Authors: Tanyaporn Chairoch

Abstract:

Introduction: Cannabis is a drug to treat patients with many diseases such as Multiple sclerosis, Alzheimer’s disease, and Epilepsy, where theycontain many active compounds such as delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Especially, THC is the primary psychoactive ingredient in cannabis and binds to cannabinoid 1 (CB1) receptors. Moreover, CB1 is located on the neocortex, hippocampus, basal ganglia, cerebellum, and brainstem. In previous study, we found the association between the variant of CB1recptors gene (rs2023239) and decreased effect of nicotine reinforcement in patients. However, there are no data describing whether the distribution of CB1 receptor gene is a genetic marker for Thai patients who are treated with cannabis. Objective: Thus, the aim of this study we want to investigate the frequency of the CB1 receptor gene in Thai patients. Materials and Methods: All of sixty Thai patients received the medical cannabis for treatment who were recruited in this study. DNA will be extracted from EDTA whole blood by Genomic DNA Mini Kit. The genotyping of CNR1 gene (rs 2023239) was genotyped by the TaqMan real time PCR assay (ABI, Foster City, CA, USA).and using the real-time PCR ViiA7 (ABI, Foster City, CA, USA). Results: We found thirty-eight (63.3%) Thai patients were female, and twenty-two (36.70%) were male in this study with median age of 45.8 (range19 – 87 ) years. Especially, thirty-two (53.30%) medical cannabis tolerant controls were female ( 55%) and median age of52.1 (range 27 – 79 ) years. The most adverse effects for medical cannabis treatment was tachycardia. Furthermore, the number of rs 2023239 (TT) carriers was 26 of 27 (96.29%) in medical cannabis-induced adverse effects and 32 of 33 (96.96%) in tolerant controls. Additionally, rs 2023239 (CT) variant was found just only one of twenty-seven (3.7%) in medical cannabis-induced adverse effects and 1 of 33 (3.03%) in tolerant controls. Conclusions: The distribution of genetic variant in CNR1 gene might serve as a pharmacogenetics markers for screening before initiating the therapy with medical cannabis in Thai patients.

Keywords: cannabis, pharmacogenetics, CNR1 gene, thai patient

Procedia PDF Downloads 110
3006 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 58
3005 Oil-Oil Correlation Using Polar and Non-Polar Fractions of Crude Oil: A Case Study in Iranian Oil Fields

Authors: Morteza Taherinezhad, Ahmad Reza Rabbani, Morteza Asemani, Rudy Swennen

Abstract:

Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Oil-oil correlation is generally estimated based on non-polar fractions of crude oil (e.g., saturate and aromatic compounds). Despite several advantages, the drawback of using these compounds is their susceptibility of being affected by secondary processes. The polar fraction of crude oil (e.g., asphaltenes) has similar characteristics to kerogen, and this structural similarity is preserved during migration, thermal maturation, biodegradation, and water washing. Therefore, these structural characteristics can be considered as a useful correlation parameter, and it can be concluded that asphaltenes from different reservoirs with the same genetic signatures have a similar origin. Hence in this contribution, an integrated study by using both non-polar and polar fractions of oil was performed to use the merits of both fractions. Therefore, five oil samples from oil fields in the Persian Gulf were studied. Structural characteristics of extracted asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. Graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulphoxide and carbonyl functional groups (which are representatives of sulphur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structures in different samples. Non-polar fractions were analyzed by GC-MS. The study of asphaltenes showed the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of Salman and Reshadat oil samples, and the second oil family consists of Resalat, Siri E, and Siri D oil samples. To validate our results, biomarker parameters were employed, and this approach completely confirmed previous results. Based on biomarker analyses, both oil families have a marine source rock, whereby marl and carbonate source rocks are the source rock for the first and the second oil family, respectively.

Keywords: biomarker, non-polar fraction, oil-oil correlation, petroleum geochemistry, polar fraction

Procedia PDF Downloads 135
3004 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 76
3003 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 138
3002 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India

Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy

Abstract:

Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.

Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats

Procedia PDF Downloads 266
3001 A Good Start for Digital Transformation of the Companies: A Literature and Experience-Based Predefined Roadmap

Authors: Batuhan Kocaoglu

Abstract:

Nowadays digital transformation is a hot topic both in service and production business. For the companies who want to stay alive in the following years, they should change how they do their business. Industry leaders started to improve their ERP (Enterprise Resource Planning) like backbone technologies to digital advances such as analytics, mobility, sensor-embedded smart devices, AI (Artificial Intelligence) and more. Selecting the appropriate technology for the related business problem also is a hot topic. Besides this, to operate in the modern environment and fulfill rapidly changing customer expectations, a digital transformation of the business is required and change the way the business runs, affect how they do their business. Even the digital transformation term is trendy the literature is limited and covers just the philosophy instead of a solid implementation plan. Current studies urge firms to start their digital transformation, but few tell us how to do. The huge investments scare companies with blur definitions and concepts. The aim of this paper to solidify the steps of the digital transformation and offer a roadmap for the companies and academicians. The proposed roadmap is developed based upon insights from the literature review, semi-structured interviews, and expert views to explore and identify crucial steps. We introduced our roadmap in the form of 8 main steps: Awareness; Planning; Operations; Implementation; Go-live; Optimization; Autonomation; Business Transformation; including a total of 11 sub-steps with examples. This study also emphasizes four dimensions of the digital transformation mainly: Readiness assessment; Building organizational infrastructure; Building technical infrastructure; Maturity assessment. Finally, roadmap corresponds the steps with three main terms used in digital transformation literacy as Digitization; Digitalization; and Digital Transformation. The resulted model shows that 'business process' and 'organizational issues' should be resolved before technology decisions and 'digitization'. Companies can start their journey with the solid steps, using the proposed roadmap to increase the success of their project implementation. Our roadmap is also adaptable for relevant Industry 4.0 and enterprise application projects. This roadmap will be useful for companies to persuade their top management for investments. Our results can be used as a baseline for further researches related to readiness assessment and maturity assessment studies.

Keywords: digital transformation, digital business, ERP, roadmap

Procedia PDF Downloads 170
3000 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
2999 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
2998 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 525
2997 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 20
2996 Sterols Regulate the Activity of Phospholipid Scramblase by Interacting through Putative Cholesterol Binding Motif

Authors: Muhasin Koyiloth, Sathyanarayana N. Gummadi

Abstract:

Biological membranes are ordered association of lipids, proteins, and carbohydrates. Lipids except sterols possess asymmetric distribution across the bilayer. Eukaryotic membranes possess a group of lipid translocators called scramblases that disrupt phospholipid asymmetry. Their action is implicated in cell activation during wound healing and phagocytic clearance of apoptotic cells. Cholesterol is one of the major membrane lipids distributed evenly on both the leaflet and can directly influence the membrane fluidity through the ordering effect. The fluidity has an impact on the activity of several membrane proteins. The palmitoylated phospholipid scramblases localized to the lipid raft which is characterized by a higher number of sterols. Here we propose that cholesterol can interact with scramblases through putative CRAC motif and can modulate their activity. To prove this, we reconstituted phospholipid scramblase 1 of C. elegans (SCRM-1) in proteoliposomes containing different amounts of cholesterol (Liquid ordered/Lo). We noted that the presence of cholesterol reduced the scramblase activity of wild-type SCRM-1. The interaction between SCRM-1 and cholesterol was confirmed by fluorescence spectroscopy using NBD-Chol. Also, we observed loss of such interaction when one of I273 in the CRAC motif mutated to Asp. Interestingly, the point mutant has partially retained scramblase activity in Lo vesicles. The current study elucidated the important interaction between cholesterol and SCRM-1 to fine-tune its activity in artificial membranes.

Keywords: artificial membranes, CRAC motif, plasma membrane, PL scramblase

Procedia PDF Downloads 175
2995 Improved Technology Portfolio Management via Sustainability Analysis

Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef

Abstract:

The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.

Keywords: sustainability, oil& gas, technology portfolio, key performance indicator

Procedia PDF Downloads 183
2994 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows

Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava

Abstract:

The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein

Procedia PDF Downloads 272
2993 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
2992 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
2991 Artificial Intelligence in Ethiopian Higher Education: The Impact of Digital Readiness Support, Acceptance, Risk, and Trust on Adoption

Authors: Merih Welay Welesilassie

Abstract:

Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.

Keywords: digital readiness support, AI acceptance, perceived risc, AI trust

Procedia PDF Downloads 18
2990 Genome-Wide Homozygosity Analysis of the Longevous Phenotype in the Amish Population

Authors: Sandra Smieszek, Jonathan Haines

Abstract:

Introduction: Numerous research efforts have focused on searching for ‘longevity genes’. However, attempting to decipher the genetic component of the longevous phenotype have resulted in limited success and the mechanisms governing longevity remain to be explained. We conducted a genome-wide homozygosity analysis (GWHA) of the founder population of the Amish community in central Ohio. While genome-wide association studies using unrelated individuals have revealed many interesting longevity associated variants, these variants are typically of small effect and cannot explain the observed patterns of heritability for this complex trait. The Amish provide a large cohort of extended kinships allowing for in depth analysis via family-based approach excellent population due to its. Heritability of longevity increases with age with significant genetic contribution being seen in individuals living beyond 60 years of age. In our present analysis we show that the heritability of longevity is estimated to be increasing with age particularly on the paternal side. Methods: The present analysis integrated both phenotypic and genotypic data and led to the discovery of a series of variants, distinct for stratified populations across ages and distinct for paternal and maternal cohorts. Specifically 5437 subjects were analyzed and a subset of 893 successfully genotyped individuals was used to assess CHIP heritability. We have conducted the homozygosity analysis to examine if homozygosity is associated with increased risk of living beyond 90. We analyzed AMISH cohort genotyped for 614,957 SNPs. Results: We delineated 10 significant regions of homozygosity (ROH) specific for the age group of interest (>90). Of particular interest was ROH on chromosome 13, P < 0.0001. The lead SNPs rs7318486 and rs9645914 point to COL4A2 and our lead SNP. COL25A1 encodes one of the six subunits of type IV collagen, the C-terminal portion of the protein, known as canstatin, is an inhibitor of angiogenesis and tumor growth. COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities. The second region of interest points to IRS2. Furthermore we built a classifier using the obtained SNPs from the significant ROH region with 0.945 AUC giving ability to discriminate between those living beyond to 90 years of age and beyond. Conclusion: In conclusion our results suggest that a history of longevity does indeed contribute to increasing the odds of individual longevity. Preliminary results are consistent with conjecture that heritability of longevity is substantial when we start looking at oldest fifth and smaller percentiles of survival specifically in males. We will validate all the candidate variants in independent cohorts of centenarians, to test whether they are robustly associated with human longevity. The identified regions of interest via ROH analysis could be of profound importance for the understanding of genetic underpinnings of longevity.

Keywords: regions of homozygosity, longevity, SNP, Amish

Procedia PDF Downloads 232
2989 The Association between IFNAR2 and Dpp9 Genes Single Nucleotide Polymorphisms Frequency with COVID-19 Severity in Iranian Patients

Authors: Sima Parvizi Omran, Rezvan Tavakoli, Mahnaz Safari, Mohammadreza Aghasadeghi, Abolfazl Fateh, Pooneh Rahimi

Abstract:

Background: SARS-CoV-2, a single-stranded RNA betacoronavirus causes the global outbreak of coronavirus disease 2019 (COVID-19). Several clinical and scientific concerns are raised by this pandemic. Genetic factors can contribute to pathogenesis and disease susceptibility. There are single nucleotide polymorphisms (SNPs) in many of the genes in the immune system that affect the expression of specific genes or functions of some proteins related to immune responses against viral infections. In this study, we analyzed the impact of polymorphism in the interferon alpha and beta receptor subunit 2 (IFNAR2) and dipeptidyl peptidase 9 (Dpp9) genes and clinical parameters on the susceptibility and resistance to Coronavirus disease (COVID-19). Methods: A total of 330- SARS-CoV-2 positive patients (188 survivors and 142 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNAR2 (rs2236757) and Dpp9 (rs2109069) were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: In survivor patients, the frequency of the favourable genotypes of IFNAR2 SNP (rs2236757 GC) was significantly higher than in nonsurvivor patients, and also Dpp9 (rs2109069 AT) genotypes were associated with the severity of COVID-19 infection. Conclusions: This study demonstrated that the severity of COVID- 19 patients was strongly associated with clinical parameters and unfavourable IFNAR2, Dpp9 SNP genotypes. In order to establish the relationship between host genetic factors and the severity of COVID-19 infection, further studies are needed in multiple parts of the world.

Keywords: SARS-CoV-2, COVID-19, interferon alpha and beta receptor subunit 2, dipeptidyl peptidase 9, single-nucleotide polymorphisms

Procedia PDF Downloads 164
2988 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 272
2987 Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania

Authors: Valbona Sota, Efigjeni Kongjika

Abstract:

Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond.

Keywords: micropropagation, minimal growth, storage, wild almond

Procedia PDF Downloads 128
2986 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 73
2985 Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods

Authors: Vinayak Bassi, Rajpreet Singh

Abstract:

Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs.

Keywords: monte carlo, stochastic models, computational finance, parallel programming, scientific computing

Procedia PDF Downloads 161
2984 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 112
2983 Phylogenetic Relationships of Aproaerema Simplexella (Walker) and the Groundnut Leaf Miner Aproaerema Modicella (Deventer) (Lepidoptera: Gelechiidae) Collected from Australia, India, Mozambique, and South Africa

Authors: Makhosi Buthelezi

Abstract:

Mitochondrial DNA cytochrome c oxidase I (COI) gene analyses linked the South African groundnut leaf miner (GLM) to the Australian soya bean moth Aproaerema simplexella (Walker) and Indian Aproaerema modicella (Deventer). Thus, the genetic relatedness of GLM, A. simplexela, and A. modicella was examined by performing mitochondrial and nuclear (COI, cytochrome oxidase subunit II (COII), mitochondrial cytochrome b (CYTB), nuclear ribosomal 28S (28S) and intergenic spacer elongation factor-1 alpha ( EF-1 ALPHA) on 44 specimens collected from South Africa, four from Mozambique, and three each from single locations in India and Australia. Phylogenetic analyses were conducted using the Maximum Parsimony (MP) and Neighbour-Joining (NJ) methods. All of the datasets of the five DNA gene regions that were sequenced were also analyzed using the Basic Local Alignment Search Tool (BLAST) to find the closest matches for inclusion in the phylogenetic trees as outgroups and for purposes of information. In the phylogenetic trees for COI, COII, cytb and EF-1 ALPHA, a similar pattern was observed in the way that the sequences assembled into different groups; i.e., some sequences of A. simplexella from Australia were grouped separately from the others, but some Australian sequences grouped with those of the GLM from South Africa, India, and Mozambique. In the phylogenetic tree for 28S, all sequences from South Africa, Australia, India, and Mozambique grouped together and formed one group. For COI, genetic pairwise distance ranged from 0.97 to 3.60 %, for COII it ranged from 0.19% to 2.32%, for cytb it ranged from 0.25 to 9.77% and for EF-1 ALPHA it ranged 0.48 to 6.99%. Results of this study indicate that these populations are genetically related and presumably constitute a single species. Thus, further molecular and morphological studies need to be undertaken in order to resolve this apparent conundrum on the taxonomy of these populations.

Keywords: aproaerema modicella, aproaerema simplexella, mitochondrial DNA, nuclear DNA

Procedia PDF Downloads 199