Search results for: traffic noise level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14597

Search results for: traffic noise level

14357 Tuning of Kalman Filter Using Genetic Algorithm

Authors: Hesham Abdin, Mohamed Zakaria, Talaat Abd-Elmonaem, Alaa El-Din Sayed Hafez

Abstract:

Kalman filter algorithm is an estimator known as the workhorse of estimation. It has an important application in missile guidance, especially in lack of accurate data of the target due to noise or uncertainty. In this paper, a Kalman filter is used as a tracking filter in a simulated target-interceptor scenario with noise. It estimates the position, velocity, and acceleration of the target in the presence of noise. These estimations are needed for both proportional navigation and differential geometry guidance laws. A Kalman filter has a good performance at low noise, but a large noise causes considerable errors leads to performance degradation. Therefore, a new technique is required to overcome this defect using tuning factors to tune a Kalman filter to adapt increasing of noise. The values of the tuning factors are between 0.8 and 1.2, they have a specific value for the first half of range and a different value for the second half. they are multiplied by the estimated values. These factors have its optimum values and are altered with the change of the target heading. A genetic algorithm updates these selections to increase the maximum effective range which was previously reduced by noise. The results show that the selected factors have other benefits such as decreasing the minimum effective range that was increased earlier due to noise. In addition to, the selected factors decrease the miss distance for all ranges of this direction of the target, and expand the effective range which leads to increase probability of kill.

Keywords: proportional navigation, differential geometry, Kalman filter, genetic algorithm

Procedia PDF Downloads 512
14356 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya

Abstract:

Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.

Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control

Procedia PDF Downloads 109
14355 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 498
14354 Sourcing and Compiling a Maltese Traffic Dataset MalTra

Authors: Gabriele Borg, Alexei De Bono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.

Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns

Procedia PDF Downloads 110
14353 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 149
14352 Vehicle Maneuverability on Horizontal Curves on Hilly Terrain: A Study on Shillong Highway

Authors: Surendra Choudhary, Sapan Tiwari

Abstract:

The driver has two fundamental duties i) controlling the position of the vehicle along the longitudinal and lateral direction of movement ii) roadway width. Both of these duties are interdependent and are concurrently referred to as two-dimensional driver behavior. One of the main problems facing driver behavior modeling is to identify the parameters for describing the exemplary driving conduct and car maneuver under distinct traffic circumstances. Still, to date, there is no well-accepted theory that can comprehensively model the 2-D driver conduct (longitudinal and lateral). The primary objective of this research is to explore the vehicle's lateral longitudinal behavior in the heterogeneous condition of traffic on horizontal curves as well as the effect of road geometry on dynamic traffic parameters, i.e., car velocity and lateral placement. In this research, with their interrelationship, a thorough assessment of dynamic car parameters, i.e., speed, lateral acceleration, and turn radius. Also, horizontal curve road parameters, i.e., curvature radius, pavement friction, are performed. The dynamic parameters of the various types of car drivers are gathered using a VBOX GPS-based tool with high precision. The connection between dynamic car parameters and curve geometry is created after the removal of noise from the GPS trajectories. The major findings of the research are that car maneuvers with higher than the design limits of speed, acceleration, and lateral deviation on the studied curves of the highway. It can become lethal if the weather changes from dry to wet.

Keywords: geometry, maneuverability, terrain, trajectory, VBOX

Procedia PDF Downloads 144
14351 A Fast Algorithm for Electromagnetic Compatibility Estimation for Radio Communication Network Equipment in a Complex Electromagnetic Environment

Authors: C. Temaneh-Nyah

Abstract:

Electromagnetic compatibility (EMC) is the ability of a Radio Communication Equipment (RCE) to operate with a desired quality of service in a given Electromagnetic Environment (EME) and not to create harmful interference with other RCE. This paper presents an algorithm which improves the simulation speed of estimating EMC of RCE in a complex EME, based on a stage by stage frequency-energy criterion of filtering. This algorithm considers different interference types including: Blocking and intermodulation. It consist of the following steps: simplified energy criterion where filtration is based on comparing the free space interference level to the industrial noise, frequency criterion which checks whether the interfering emissions characteristic overlap with the receiver’s channels characteristic and lastly the detailed energy criterion where the real channel interference level is compared to the noise level. In each of these stages, some interference cases are filtered out by the relevant criteria. This reduces the total number of dual and different combinations of RCE involved in the tedious detailed energy analysis and thus provides an improved simulation speed.

Keywords: electromagnetic compatibility, electromagnetic environment, simulation of communication network

Procedia PDF Downloads 219
14350 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 98
14349 ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments.

Keywords: frequency offset, cyclic prefix, maximum-likelihood, non-Gaussian noise, OFDM

Procedia PDF Downloads 476
14348 Microsimulation of Potential Crashes as a Road Safety Indicator

Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale

Abstract:

Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.

Keywords: road safety, traffic, traffic safety, traffic simulation

Procedia PDF Downloads 135
14347 Effect of Noise Reducing Headphones on the Short-Term Memory Recall of College Students

Authors: Gregory W. Smith, Paul J. Riccomini

Abstract:

The goal of this empirical inquiry is to explore the effect of noise reducing headphones on the short-term memory recall of college students. Immediately following the presentation (via PowerPoint) of 12 unrelated and randomly selected one- and two-syllable words, students were asked to recall as many words as possible. Using a linear model with conditions marked with binary indicators, we examined the frequency and accuracy of words that were recalled. The findings indicate that for some students, a reduction of noise has a significant positive impact on their ability to recall information. As classrooms become more aurally distracting due to the implementation of cooperative learning activities, these findings highlight the need for a quiet learning environment for some learners.

Keywords: auditory distraction, education, instruction, noise, working memory

Procedia PDF Downloads 335
14346 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 123
14345 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 164
14344 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences

Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal

Abstract:

Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.

Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles

Procedia PDF Downloads 511
14343 YOLO-IR: Infrared Small Object Detection in High Noise Images

Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long

Abstract:

Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.

Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion

Procedia PDF Downloads 79
14342 Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks

Authors: Kumar Manoj, Ramesh Kumar, Kumari Arti, Kumar Prashant

Abstract:

Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts.

Keywords: MANET, AODV, DSDV, DSR, ZRP

Procedia PDF Downloads 680
14341 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 90
14340 Voice Commands Recognition of Mentor Robot in Noisy Environment Using HTK

Authors: Khenfer-Koummich Fatma, Hendel Fatiha, Mesbahi Larbi

Abstract:

this paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a man-machine interface with a voice recognition system that allows the operator to tele-operate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands spoken in two languages: French and Arabic. The recognition rate obtained is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equal to 30 db, the Arabic speech recognition rate is 69% and 80% for French speech recognition rate. This can be explained by the ability of phonetic context of each speech when the noise is added.

Keywords: voice command, HMM, TIMIT, noise, HTK, Arabic, speech recognition

Procedia PDF Downloads 383
14339 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).

Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion

Procedia PDF Downloads 584
14338 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 73
14337 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques

Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian

Abstract:

Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.

Keywords: data mining, k-means, road traffic accidents, Waze, Weka

Procedia PDF Downloads 418
14336 Research on the Public Policy of Vehicle Restriction under Traffic Control

Authors: Wang Qian, Bian Cheng Xiang

Abstract:

In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance.

Keywords: carbon emission, traffic jams, vehicle restrictions, evaluate

Procedia PDF Downloads 161
14335 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol

Procedia PDF Downloads 753
14334 Experimental Analysis of Structure Borne Noise in an Enclosure

Authors: Waziralilah N. Fathiah, A. Aminudin, U. Alyaa Hashim, T. Vikneshvaran D. Shakirah Shukor

Abstract:

This paper presents the experimental analysis conducted on a structure borne noise in a rectangular enclosure prototype made by joining of sheet aluminum metal and plywood. The study is significant as many did not realized the annoyance caused by structural borne-noise. In this study, modal analysis is carried out to seek the structure’s behaviour in order to identify the characteristics of enclosure in frequency domain ranging from 0 Hz to 200 Hz. Here, numbers of modes are identified and the characteristic of mode shape is categorized. Modal experiment is used to diagnose the structural behaviour while microphone is used to diagnose the sound. Spectral testing is performed on the enclosure. It is acoustically excited using shaker and as it vibrates, the vibrational and noise responses sensed by tri-axis accelerometer and microphone sensors are recorded respectively. Experimental works is performed on each node lies on the gridded surface of the enclosure. Both experimental measurement is carried out simultaneously. The modal experimental results of the modal modes are validated by simulation performed using MSC Nastran software. In pursuance of reducing the structure borne-noise, mitigation method is used whereby the stiffener plates are perpendicularly placed on the sheet aluminum metal. By using this method, reduction in structure borne-noise is successfully made at the end of the study.

Keywords: enclosure, modal analysis, sound analysis, structure borne-noise

Procedia PDF Downloads 438
14333 Reduction of Speckle Noise in Echocardiographic Images: A Survey

Authors: Fathi Kallel, Saida Khachira, Mohamed Ben Slima, Ahmed Ben Hamida

Abstract:

Speckle noise is a main characteristic of cardiac ultrasound images, it corresponding to grainy appearance that degrades the image quality. For this reason, the ultrasound images are difficult to use automatically in clinical use, then treatments are required for this type of images. Then a filtering procedure of these images is necessary to eliminate the speckle noise and to improve the quality of ultrasound images which will be then segmented to extract the necessary forms that exist. In this paper, we present the importance of the pre-treatment step for segmentation. This work is applied to cardiac ultrasound images. In a first step, a comparative study of speckle filtering method will be presented and then we use a segmentation algorithm to locate and extract cardiac structures.

Keywords: medical image processing, ultrasound images, Speckle noise, image enhancement, speckle filtering, segmentation, snakes

Procedia PDF Downloads 530
14332 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed

Authors: Alexander N. Pisarchik, Parth Chholak

Abstract:

Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.

Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time

Procedia PDF Downloads 150
14331 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)

Procedia PDF Downloads 384
14330 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF

Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos

Abstract:

An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.

Keywords: airborne noise, performance standard, soundproofing, vertical seal

Procedia PDF Downloads 298
14329 Traffic Accident Risk Assessment on National Roads: A Case Study in East Aceh Regency

Authors: Muksalmina

Abstract:

Transportation plays an important role in people's daily activities but is often marred by traffic accidents. In Indonesia, traffic accidents are the third leading cause of death after coronary heart disease and tuberculosis, according to the World Health Organization (2013). Several roads in East Aceh District are strategic access points for economic growth in the Aceh region. There were 446 traffic accidents in 2023, which is the highest case in the last five years. This study aims to analyze black spot locations on national roads in East Aceh District and evaluate road safety deficiencies in the area. The research methodology began by selecting the locations with the highest accident rates based on data from East Aceh Police from 2019-2023. Next, Average Daily Traffic (ADT) was measured by projecting population growth data. The analysis of road safety deficiencies included measurements of road geometrics, traffic signs and markings, and traffic volumes at black spot locations. The study results showed deficiencies in lane width, shoulder width, and inadequate road safety facilities at several locations. Recommendations for improvements include increasing lane and shoulder widths and adding signs and markings to improve safety. This study is expected to serve as a reference for the government and relevant stakeholders in improving traffic safety in East Aceh District.

Keywords: black spot, traffic accident, severity index, road safety

Procedia PDF Downloads 36
14328 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 133