Search results for: saturated control
10877 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement
Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar
Abstract:
Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio
Procedia PDF Downloads 29510876 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network
Authors: Magdi. M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control
Procedia PDF Downloads 70210875 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks
Authors: Apidet Booranawong, Wiklom Teerapabkajorndet
Abstract:
An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio
Procedia PDF Downloads 33810874 Control of Sensors in Metering System of Fluid
Authors: A. Harrouz, O. Harrouz, A. Benatiallah
Abstract:
This paper is to review the essential definitions, roles, and characteristics of communication of metering system. We discuss measurement, data acquisition, and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.Keywords: data acquisition, dynamic metering system, reference standards, metrological control
Procedia PDF Downloads 49210873 Flexible Arm Manipulator Control for Industrial Tasks
Authors: Mircea Ivanescu, Nirvana Popescu, Decebal Popescu, Dorin Popescu
Abstract:
This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper.Keywords: distributed model, flexible manipulator, observer, robot control
Procedia PDF Downloads 32110872 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency
Authors: Fayssal Amrane, Azeddine Chaiba
Abstract:
In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)
Procedia PDF Downloads 41910871 Modeling and Control of an Acrobot Using MATLAB and Simulink
Authors: Dong Sang Yoo
Abstract:
The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative of underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.Keywords: acrobot, MATLAB and simulink, sliding mode control, underactuated system
Procedia PDF Downloads 79910870 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm
Authors: Hossein Abbasi
Abstract:
The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.Keywords: frequency control, HS algorithm, microgrid, PI controller, voltage control
Procedia PDF Downloads 39110869 Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit
Authors: Kouider Bendine, Zouaoui Satla, Boukhoulda Farouk Benallel, Shun-Qi Zhang
Abstract:
Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%.Keywords: blade, active piezoelectric vibration control, finite element., shunt circuit
Procedia PDF Downloads 10110868 A Simulated Evaluation of Model Predictive Control
Authors: Ahmed AlNouss, Salim Ahmed
Abstract:
Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)
Procedia PDF Downloads 40710867 Power-Aware Adaptive Coverage Control with Consensus Protocol
Authors: Mert Turanli, Hakan Temeltas
Abstract:
In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination
Procedia PDF Downloads 35310866 Intelligent Control Design of Car Following Behavior Using Fuzzy Logic
Authors: Abdelkader Merah, Kada Hartani
Abstract:
A reference model based control approach for improving behavior following car is proposed in this paper. The reference model is nonlinear and provides dynamic solutions consistent with safety constraints and comfort specifications. a robust fuzzy logic based control strategy is further proposed in this paper. A set of simulation results showing the suitability of the proposed technique for various demanding cenarios is also included in this paper.Keywords: reference model, longitudinal control, fuzzy logic, design of car
Procedia PDF Downloads 43010865 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control
Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng
Abstract:
A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design
Procedia PDF Downloads 12510864 Developing Variable Repetitive Group Sampling Control Chart Using Regression Estimator
Authors: Liaquat Ahmad, Muhammad Aslam, Muhammad Azam
Abstract:
In this article, we propose a control chart based on repetitive group sampling scheme for the location parameter. This charting scheme is based on the regression estimator; an estimator that capitalize the relationship between the variables of interest to provide more sensitive control than the commonly used individual variables. The control limit coefficients have been estimated for different sample sizes for less and highly correlated variables. The monitoring of the production process is constructed by adopting the procedure of the Shewhart’s x-bar control chart. Its performance is verified by the average run length calculations when the shift occurs in the average value of the estimator. It has been observed that the less correlated variables have rapid false alarm rate.Keywords: average run length, control charts, process shift, regression estimators, repetitive group sampling
Procedia PDF Downloads 56510863 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink
Procedia PDF Downloads 59510862 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller
Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui
Abstract:
This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.Keywords: backstipping, DFIG, power control, sliding-mode, WESC
Procedia PDF Downloads 59410861 Digital Control Techniques for Power Electronic Devices
Authors: Rakesh Krishna, Abhishek Poddar
Abstract:
The paper discusses the work carried out on the implementation of control techniques like Digital Pulse Width Modulation (PWM) and Digital Pulse Fired control(PFC). These techniques are often used in devices like inverters, battery chargers, DC-to-DC converters can also be implemented on household devices like heaters. The advantage being the control and improved life span of device. In case of batteries using these techniques are known to increase the life span of battery in mobiles and other hand-held devices. 8051 microcontroller is used to implement these methods.Thyristors are used for switching operations.Keywords: PWM, SVM, PFC, bidirectional inverters, snubber
Procedia PDF Downloads 57210860 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV
Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol
Abstract:
In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing
Procedia PDF Downloads 44010859 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method
Authors: Ibrahim Cicek, Melike Nikbay
Abstract:
Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.Keywords: optimization, e-powertrain, optimal control, electric vehicles
Procedia PDF Downloads 13210858 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank
Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani
Abstract:
This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.Keywords: induction heating, AVC control, CDM, PLL, resonant inverter
Procedia PDF Downloads 66410857 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles
Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh
Abstract:
This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs
Procedia PDF Downloads 21210856 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42210855 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking
Authors: Tohru Kawabe
Abstract:
In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression
Procedia PDF Downloads 56110854 Task Space Synchronization Control of Multi-Robot Arms with Position Synchronous Method
Authors: Zijian Zhang, Yangyang Dong
Abstract:
Synchronization is of great importance to ensure the multi-arm robot to complete the task. Therefore, a synchronous controller is designed to coordinate task space motion of the multi-arm in the paper. The position error, the synchronous position error, and the coupling position error are all considered in the controller. Besides, an adaptive control method is used to adjust parameters of the controller to improve the effectiveness of coordinated control performance. Simulation in the Matlab shows the effectiveness of the method. At last, a robot experiment platform with two 7-DOF (Degree of Freedom) robot arms has been established and the synchronous controller simplified to control dual-arm robot has been validated on the experimental set-up. Experiment results show the position error decreased 10% and the corresponding frequency is also greatly improved.Keywords: synchronous control, space robot, task space control, multi-arm robot
Procedia PDF Downloads 16510853 Control of Hybrid System Using Fuzzy Logic
Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi
Abstract:
This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control
Procedia PDF Downloads 55510852 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System
Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal
Abstract:
In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system
Procedia PDF Downloads 48510851 Design of Lead-Lag Based Internal Model Controller for Binary Distillation Column
Authors: Rakesh Kumar Mishra, Tarun Kumar Dan
Abstract:
Lead-Lag based Internal Model Control method is proposed based on Internal Model Control (IMC) strategy. In this paper, we have designed the Lead-Lag based Internal Model Control for binary distillation column for SISO process (considering only bottom product). The transfer function has been taken from Wood and Berry model. We have find the composition control and disturbance rejection using Lead-Lag based IMC and comparing with the response of simple Internal Model Controller.Keywords: SISO, lead-lag, internal model control, wood and berry, distillation column
Procedia PDF Downloads 64610850 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance
Authors: Babatunde Akeem Lawal
Abstract:
In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.Keywords: organization, cost reduction, cost control, performance, budget, profit
Procedia PDF Downloads 60310849 Control Technique for Single Phase Bipolar H-Bridge Inverter Connected to the Grid
Authors: L. Hassaine, A. Mraoui, M. R. Bengourina
Abstract:
In photovoltaic system, connected to the grid, the main goal is to control the power that the inverter injects into the grid from the energy provided by the photovoltaic generator. This paper proposes a control technique for a photovoltaic system connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal current output with a grid voltage and generate power at unity power factor. This control is based on H-Bridge inverter controlled by bipolar PWM Switching. The electrical scheme of the system is presented. Simulations results of output voltage and current validate the impact of this method to determinate the appropriate control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on a Xilinx FPGA.Keywords: grid connected photovoltaic system, H-Bridge inverter, control, bipolar PWM
Procedia PDF Downloads 31710848 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators
Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy
Abstract:
Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network
Procedia PDF Downloads 637