Search results for: modelling and simulation technology
13337 Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling
Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón
Abstract:
Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD
Procedia PDF Downloads 48713336 PSS®E Based Modelling, Simulation and Synchronous Interconnection of Eastern Grid and North-Eastern Regional Grid of India
Authors: Toushik Maiti, Saibal Chatterjee, Kamaljyoti Gogoi, Arijit Basuray
Abstract:
Eastern Regional(ER) Grid and North Eastern Regional (NER) Grid are two major grids of Eastern Part of India. Both of the grid consists of voltage level 765kV, 400 kV, 220 kV and numerous buses at lower voltage range. Eastern Regional Grid and North Eastern Regional Grid are not only connected among themselves but are also connected to various other grids of India. ER and NER Grid having various HVDC lines or back to back systems which form the total network. The studied system comprises of 340 buses of different voltage levels and transmission lines running over a length of 32089 km. The validation of load flow has been done using IEEE STANDARD 30 bus system. The power flow simulation analysis has been performed after synchronizing both the Eastern Grid and North-Eastern Regional Grid of India using Power System Simulators for Engineering (PSS®E) Important inferences has been drawn from the study.Keywords: HVDC, load flow, PSS®E, unsymmetrical and symmetrical faults
Procedia PDF Downloads 38313335 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery
Procedia PDF Downloads 40713334 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment
Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah
Abstract:
Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.Keywords: response time, query, consistency, bandwidth, storage capacity, CERN
Procedia PDF Downloads 27313333 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia
Abstract:
Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines
Procedia PDF Downloads 23413332 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions
Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch
Abstract:
Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.Keywords: behavioural realism, electric vehicles, social influence, vehicle choice
Procedia PDF Downloads 18713331 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network
Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram
Abstract:
Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power
Procedia PDF Downloads 7113330 Design and Implementation of Collaborative Editing System Based on Physical Simulation Engine Running State
Authors: Zhang Songning, Guan Zheng, Ci Yan, Ding Gangyi
Abstract:
The application of physical simulation engines in collaborative editing systems has an important background and role. Firstly, physical simulation engines can provide real-world physical simulations, enabling users to interact and collaborate in real time in virtual environments. This provides a more intuitive and immersive experience for collaborative editing systems, allowing users to more accurately perceive and understand various elements and operations in collaborative editing. Secondly, through physical simulation engines, different users can share virtual space and perform real-time collaborative editing within it. This real-time sharing and collaborative editing method helps to synchronize information among team members and improve the efficiency of collaborative work. Through experiments, the average model transmission speed of a single person in the collaborative editing system has increased by 141.91%; the average model processing speed of a single person has increased by 134.2%; the average processing flow rate of a single person has increased by 175.19%; the overall efficiency improvement rate of a single person has increased by 150.43%. With the increase in the number of users, the overall efficiency remains stable, and the physical simulation engine running status collaborative editing system also has horizontal scalability. It is not difficult to see that the design and implementation of a collaborative editing system based on physical simulation engines not only enriches the user experience but also optimizes the effectiveness of team collaboration, providing new possibilities for collaborative work.Keywords: physics engine, simulation technology, collaborative editing, system design, data transmission
Procedia PDF Downloads 8813329 Enhancing Building Performance Simulation Through Artificial Intelligence
Authors: Thamer Mahmmoud Muhammad Al Jbarat
Abstract:
Building Performance Simulation plays a crucial role in optimizing energy efficiency, comfort, and sustainability in buildings. This paper explores the integration of Artificial Intelligence techniques into Building Performance Simulation to enhance accuracy, efficiency, and adaptability. The synthesis of Artificial Intelligence and Building Performance Simulation offers promising avenues for addressing complex building dynamics, optimizing energy consumption, and improving occupants' comfort. This paper examines various Artificial Intelligence methodologies and their applications in Building Performance Simulation, highlighting their potential benefits and challenges. Through a comprehensive review of existing literature and case studies, this paper presents insights into the current state, future directions, and implications of Artificial Intelligence driven Building Performance Simulation on the built environmentKeywords: artificial intelligence, building performance, energy efficiency, building performance simulation, buildings sustainability, built environment.
Procedia PDF Downloads 2813328 Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach
Authors: Eric York, James Tadio, Silas Owusu Antwi
Abstract:
Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched.Keywords: simulation studies, phosphate removal, biochar, adsorption, wastewater treatment
Procedia PDF Downloads 14213327 Potential Climate Change Impacts on the Hydrological System of the Harvey River Catchment
Authors: Hashim Isam Jameel Al-Safi, P. Ranjan Sarukkalige
Abstract:
Climate change is likely to impact the Australian continent by changing the trends of rainfall, increasing temperature, and affecting the accessibility of water quantity and quality. This study investigates the possible impacts of future climate change on the hydrological system of the Harvey River catchment in Western Australia by using the conceptual modelling approach (HBV mode). Daily observations of rainfall and temperature and the long-term monthly mean potential evapotranspiration, from six weather stations, were available for the period (1961-2015). The observed streamflow data at Clifton Park gauging station for 33 years (1983-2015) in line with the observed climate variables were used to run, calibrate and validate the HBV-model prior to the simulation process. The calibrated model was then forced with the downscaled future climate signals from a multi-model ensemble of fifteen GCMs of the CMIP3 model under three emission scenarios (A2, A1B and B1) to simulate the future runoff at the catchment outlet. Two periods were selected to represent the future climate conditions including the mid (2046-2065) and late (2080-2099) of the 21st century. A control run, with the reference climate period (1981-2000), was used to represent the current climate status. The modelling outcomes show an evident reduction in the mean annual streamflow during the mid of this century particularly for the A1B scenario relative to the control run. Toward the end of the century, all scenarios show a relatively high reduction trends in the mean annual streamflow, especially the A1B scenario, compared to the control run. The decline in the mean annual streamflow ranged between 4-15% during the mid of the current century and 9-42% by the end of the century.Keywords: climate change impact, Harvey catchment, HBV model, hydrological modelling, GCMs, LARS-WG
Procedia PDF Downloads 26413326 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management
Authors: Jiří Barta
Abstract:
The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.Keywords: Computer Simulation, Symos97, Spread, Simulation Software, Harmful Substances
Procedia PDF Downloads 29913325 Deformation Analysis of Pneumatized Sphenoid Bone Caused Due to Elevated Intracranial Pressure Using Finite Element Analysis
Authors: Dilesh Mogre, Jitendra Toravi, Saurabh Joshi, Prutha Deshpande, Aishwarya Kura
Abstract:
In earlier days of technology, it was not possible to understand the nature of complex biomedical problems and were only left to clinical postulations. With advancement in science today, we have tools like Finite Element Modelling and simulation to solve complex biomedical problems. This paper presents how ANSYS WORKBENCH can be used to study deformation of pneumatized sphenoid bone caused by increased intracranial pressure. Intracranial pressure refers to the pressure inside the skull. The increase in the pressure above the normal range of 15mmhg can lead to serious conditions due to developed stresses and deformation. One of the areas where the deformation is suspected to occur is Sphenoid Bone. Moreover, the varying degree of pneumatization increases the complexity of the conditions. It is necessary to study deformation patterns on pneumatized sphenoid bone model at elevated intracranial pressure. Finite Element Analysis plays a major role in developing and analyzing model and give quantitative results.Keywords: intracranial pressure, pneumatized sphenoid bone, deformation, finite element analysis
Procedia PDF Downloads 19613324 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition
Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan
Abstract:
Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models
Procedia PDF Downloads 34213323 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow
Authors: Musa Akdere, Gunnar Seide, Thomas Gries
Abstract:
Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface
Procedia PDF Downloads 27613322 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology
Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache
Abstract:
The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation
Procedia PDF Downloads 6013321 Transmission Line Matrix (TLM) Modelling of Microstrip Circular Antenna
Authors: Jugoslav Jokovic, Tijana Dimitrijevic, Nebojsa Doncov
Abstract:
The goal of this paper is to investigate the possibilities and effectiveness of the TLM (Transmission Line Matrix) method for modelling of up-to-date microstrip antennas with circular geometry that have significant application in modern wireless communication systems. The coaxially fed microstrip antenna configurations with circular patch are analyzed by using the in-house 3DTLMcyl_cw solver based on computational electromagnetic TLM method adapted to the cylindrical grid and enhanced with the compact wire model. Opposed to the widely used rectangular TLM mesh, where a staircase approximation has to be used to describe curved boundaries, precise modelling of circular boundaries can be accomplished in the cylindrical grid irrespective of the mesh resolution. Using the compact wire model incorporated in cylindrical mesh, it is possible to model coaxial feed and include the influence of the real excitation in the antenna model. The conventional and inverted configuration of a coaxially fed circular patch antenna are considered, comparing the resonances obtained using TLM cylindrical model with results reached by the corresponding model in a rectangular grid as well as with experimental ones. Bearing in mind that accuracy of simulated results depends on a relevantly created model, besides structure geometry and dimensions, it is important to consider additional modelling issues, regarding appropriate mesh resolution and a relevant extension of a mesh around the considered structure that would provide convergence of the results.Keywords: computational electromagnetic, coaxial feed, microstrip antenna, TLM modelling
Procedia PDF Downloads 28013320 LTE Modelling of a DC Arc Ignition on Cold Electrodes
Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov
Abstract:
The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes
Procedia PDF Downloads 12513319 Comparison of Different Hydrograph Routing Techniques in XPSTORM Modelling Software: A Case Study
Authors: Fatema Akram, Mohammad Golam Rasul, Mohammad Masud Kamal Khan, Md. Sharif Imam Ibne Amir
Abstract:
A variety of routing techniques are available to develop surface runoff hydrographs from rainfall. The selection of runoff routing method is very vital as it is directly related to the type of watershed and the required degree of accuracy. There are different modelling softwares available to explore the rainfall-runoff process in urban areas. XPSTORM, a link-node based, integrated storm-water modelling software, has been used in this study for developing surface runoff hydrograph for a Golf course area located in Rockhampton in Central Queensland in Australia. Four commonly used methods, namely SWMM runoff, Kinematic wave, Laurenson, and Time-Area are employed to generate runoff hydrograph for design storm of this study area. In runoff mode of XPSTORM, the rainfall, infiltration, evaporation and depression storage for sub-catchments were simulated and the runoff from the sub-catchment to collection node was calculated. The simulation results are presented, discussed and compared. The total surface runoff generated by SWMM runoff, Kinematic wave and Time-Area methods are found to be reasonably close, which indicates any of these methods can be used for developing runoff hydrograph of the study area. Laurenson method produces a comparatively less amount of surface runoff, however, it creates highest peak of surface runoff among all which may be suitable for hilly region. Although the Laurenson hydrograph technique is widely acceptable surface runoff routing technique in Queensland (Australia), extensive investigation is recommended with detailed topographic and hydrologic data in order to assess its suitability for use in the case study area.Keywords: ARI, design storm, IFD, rainfall temporal pattern, routing techniques, surface runoff, XPSTORM
Procedia PDF Downloads 45413318 Implementation of IWA-ASM1 Model for Simulating the Wastewater Treatment Plant of Beja by GPS-X 5.1
Authors: Fezzani Boubaker
Abstract:
The modified activated sludge model (ASM1 or Mantis) is a generic structured model and a common platform for dynamic simulation of varieties of aerobic processes for optimization and upgrading of existing plants and for new facilities design. In this study, the modified ASM1 included in the GPS-X software was used to simulate the wastewater treatment plant (WWTP) of Beja treating domestic sewage mixed with baker‘s yeast factory effluent. The results of daily measurements and operating records were used to calibrate the model. A sensitivity and an automatic optimization analysis were conducted to determine the most sensitive and optimal parameters. The results indicated that the ASM1 model could simulate with good accuracy: the COD concentration of effluents from the WWTP of Beja for all months of the year 2012. In addition, it prevents the disruption observed at the output of the plant by injecting the baker‘s yeast factory effluent at high concentrations varied between 20 and 80 g/l.Keywords: ASM1, activated sludge, baker’s yeast effluent, modelling, simulation, GPS-X 5.1 software
Procedia PDF Downloads 34413317 Factors Influencing University Student's Acceptance of New Technology
Authors: Fatma Khadra
Abstract:
The objective of this research is to identify the acceptance of new technology in a sample of 150 Participants from Qatar University. Based on the Technology Acceptance Model (TAM), we used the Davis’s scale (1989) which contains two item scales for Perceived Usefulness and Perceived Ease of Use. The TAM represents an important theoretical contribution toward understanding how users come to accept and use technology. This model suggests that when people are presented with a new technology, a number of variables influence their decision about how and when they will use it. The results showed that participants accept more technology because flexibility, clarity, enhancing the experience, enjoying, facility, and useful. Also, results showed that younger participants accept more technology than others.Keywords: new technology, perceived usefulness, perceived ease of use, technology acceptance model
Procedia PDF Downloads 32213316 Economics of Precision Mechanization in Wine and Table Grape Production
Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka
Abstract:
The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes
Procedia PDF Downloads 26113315 The Contribution Study of Multi-component Thermal Fluid Enhancement in Offshore Medium and Deep Heavy Oilfields
Authors: Tao Lin, Hongzhi Song, Zhongtao Yuan, Shanshan Lin, Chunyue Tong
Abstract:
Offshore heavy oil in the production of thick oil fields, old wells of low production and low efficiency are mainly caused by plugging, heavy oil, insufficient stratigraphic energy, etc., the use of heat - gas - chemical and other composite production enhancement role, can be better to achieve the purpose of unblocking and increase the efficiency of the production. Through indoor physical simulation experiments, comprehensive grey correlation analysis, combined with theoretical methods to analyze the composite production enhancement effect of heat-gas-chemical and other factors was in the order of heat>gas>chemical agent; and quantitative analysis of the data shows that the contribution of heat is the highest in the range of 68.5%-82.8%, the gas role in the range of 9.3%-11.3%, and the contribution of the chemical agent in the range of 6.0%-22.2%. Combined with indoor physical simulation experiments and reservoir engineering calculations, it shows that the production capacity is restored and increased by about 50%, and numerical simulation calculations show that the cumulative increase in production by using thermal-gas-chemical decongestion process measures can be up to 40%. Through the optimization of this kind of compound production enhancement technology, it can meet the requirements of original production string operation, and this technology has the advantages of short, flat and fast operation and has good application prospects.Keywords: MCTF, old heavy oil wells, low production and low efficiency, immobile tubular column, composite production increase
Procedia PDF Downloads 1013314 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain
Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim
Abstract:
As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.Keywords: scan chain, single event transient, soft error, 8051 processor
Procedia PDF Downloads 34813313 Exergy Analysis and Evaluation of the Different Flowsheeting Configurations for CO₂ Capture Plant Using 2-Amino-2-Methyl-1-Propanol
Authors: Ebuwa Osagie, Vasilije Manovic
Abstract:
Exergy analysis provides the identification of the location, sources of thermodynamic inefficiencies, and magnitude in a thermal system. Thus, both the qualitative and quantitative assessment can be evaluated with exergy, unlike energy which is based on quantitative assessment only. The main purpose of exergy analysis is to identify where exergy is destroyed. Thus, reduction of the exergy destruction and losses associated with the capture plant systems can improve work potential. Furthermore, thermodynamic analysis of different configurations of the process helps to identify opportunities for reducing the steam requirements for each of the configurations. This paper presents steady-state simulation and exergy analysis of the 2-amino-2-methyl-1-propanol (AMP)-based post-combustion capture (PCC) plant. Exergy analysis performed for the AMP-based plant and the different configurations revealed that the rich split with intercooling configuration gave the highest exergy efficiency of 73.6%, while that of the intercooling and the reference AMP-based plant were 57.3% and 55.8% respectively.Keywords: 2-amino-2-methyl-1-propanol, modelling, and simulation, post-combustion capture plant, exergy analysis, flowsheeting configurations
Procedia PDF Downloads 16413312 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground
Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane
Abstract:
Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.Keywords: reliability approach, storage tanks, monte carlo simulation, seismic acceleration
Procedia PDF Downloads 31013311 A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process
Authors: Amol M. Jadhav, Sharad S. Chudhari, S. S. Khedkar
Abstract:
This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material.Keywords: metal spinning, FEM analysis, simulation of metal spinning, mechanical engineering
Procedia PDF Downloads 38713310 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: adaptive methods, LSE, MSE, prediction of financial Markets
Procedia PDF Downloads 33813309 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales
Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng
Abstract:
Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.Keywords: landslides, modelling, rainfall, suction
Procedia PDF Downloads 18413308 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand
Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk
Abstract:
Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment
Procedia PDF Downloads 129