Search results for: mechanical responses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5738

Search results for: mechanical responses

5498 Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling

Authors: Buğra Sinmez

Abstract:

In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection.

Keywords: geosynthetics, geogrid, railway, transportation

Procedia PDF Downloads 170
5497 Authenticity from the Perspective of Locals: What Prince Edward Islanders Had to Say about Authentic Tourism Experiences

Authors: Susan C. Graham

Abstract:

Authenticity has grown to be ubiquitous within the tourism vernacular. Yet, agreement regarding what authenticity means in relation to tourism remains nebulous. In its simplest form, authenticity in tourism refers to products and experiences that provide insights into the social, cultural, economic, natural, historical, and political life of a place. But this definition is unwieldy in its scope and may not help industry leaders nor tourist in identifying that which is authentic. Much of what is projected as authentic is a carefully curated and crafted message developed by marketers to appeal to visitors and bears little resemblance to the everyday lives of locals. So perhaps one way to identify authentic tourism experiences is to ask locals themselves. The purpose of this study was to explore the perspectives of locals with respect to what constituted an authentic tourism experience in Prince Edward Island (PEI), Canada. Over 600 volunteers in a tourism research panel were sent a survey asking them to describe authentic PEI experiences within ten sub-categories relevant to the local tourism industry. To make participation more manageable, each respondent was asked their perspectives on any three of the tourism sub-categories. Over 400 individuals responded, providing 1391 unique responses. The responses were grouped thematically using interpretive phenomenological analysis whereby the participants’ responses were clustered into higher order groups to extract meaning. Two interesting thematic observations emerged: first, that respondents tended to clearly articulate and differentiate between intra- versus interpersonal experiences as a means of authentically experiencing PEI; and second, while respondents explicitly valued unstaged experiences over staged, several exceptions to this general rule were expressed. Responses could clearly be grouped into those that emphasized “going off the beaten path,” “exploring pristine and untouched corners,” “lesser known,” “hidden”, “going solo,” and taking the opportunity to “slow down.” Each of these responses was “self” centered, and focused on the visitor discovering and exploring in search of greater self-awareness and inner peace. In contrast, other responses encouraged the interaction of visitors with locals as a means of experiencing the authentic place. Respondents sited “going deep-sea fishing” to learn about local fishers and their communities, stopping by “local farm stands” and speaking with farmers who worked the land for generations,” patronizing “local restaurants, pubs, and b&bs”, and partaking in performances or exhibits by local artists. These kinds of experiences, the respondents claimed, provide an authentic glimpse into a place’s character. The second set of observations focused on the distinction between staged and unstaged experiences, with respondents overwhelmingly advocating for unstaged. Responses were clear in shunning “touristy,” “packaged,” and “fake” offerings for being inauthentic and misrepresenting the place as locals view it. Yet many respondents made exceptions for certain “staged” experiences, including (quite literally) the stage production of Anne of Green Gables based on the novel of the same name, the theatrical re-enactment of the founding of Canada, and visits to PEI’s many provincial and national parks, all of which respondents considered both staged and authentic at the same time.

Keywords: authentic, local, Prince Edward Island, tourism

Procedia PDF Downloads 259
5496 The Effects of Various Curing Compounds on the Mechanical Characteristics of Roller Compacted Concrete Pavements (RCCP)

Authors: Azadeh Askarinejad, Parmida Hayati, Parham Hayati, Reza Parchami

Abstract:

Curing is a very important factor in the ultimate strength and durability of roller compacted concrete pavements (RCCP). Curing involves keeping the concrete is saturated or close to saturation point. Since maintaining concrete moisture has a significant impact on its mechanical properties, permeability and durability, curing is important. The most common procedure for curing of roller compacted concrete is using a white pigmented curing compound. This method is effective, economical and fast. In the present study, different curing compounds were applied on concrete specimens and the results of their effects on the mechanical properties were compared with each other and usual methods of curing in order to select appropriate materials and methods of curing for RCCP construction.

Keywords: curing compounds, roller compacted concrete pavements, mechanical properties, durability

Procedia PDF Downloads 613
5495 Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers

Authors: Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi

Abstract:

Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other.

Keywords: electroencephalography, expertise, musical features, real-life music

Procedia PDF Downloads 479
5494 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 52
5493 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 312
5492 Calm, Confusing and Chaotic: Investigating Humanness through Sentiment Analysis of Abstract Artworks

Authors: Enya Autumn Trenholm-Jensen, Hjalte Hviid Mikkelsen

Abstract:

This study was done in the pursuit of nuancing the discussion surrounding what it means to be human in a time of unparalleled technological development. Subjectivity was deemed to be an accessible example of humanity to study, and art was a fitting medium through which to probe subjectivity. Upon careful theoretical consideration, abstract art was found to fit the parameters of the study with the added bonus of being, as of yet, uninterpretable from an AI perspective. It was hypothesised that dissimilar appraisals of the art stimuli would be found through sentiment and terminology. Opinion data was collected through survey responses and analysed using Valence Aware Dictionary for sEntiment Reasoning (VADER) sentiment analysis. The results reflected the enigmatic nature of subjectivity through erratic ratings of the art stimuli. However, significant themes were found in the terminology used in the responses. The implications of the findings are discussed in relation to the uniqueness, or lack thereof, of human subjectivity, and directions for future research are provided.

Keywords: abstract art, artificial intelligence, cognition, sentiment, subjectivity

Procedia PDF Downloads 113
5491 Flexible Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposites Filled with Ternary Nanofillers for Energy Harvesting

Authors: D. Ponnamma, E. Alper, P. Sharma, M. A. AlMaadeed

Abstract:

Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a tri phasic filler combination of one-dimensional titanium dioxide nanotubes, two-dimensional reduced graphene oxide, and three-dimensional strontium titanate, introduced into a semi crystalline polymer, Poly(vinylidene fluoride-co-hexafluoropropylene). Simple mixing method is adopted for the composite fabrication after ensuring a high interaction among the various fillers. The films prepared were mainly tested for the piezoelectric responses and the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose an integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.

Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposites

Procedia PDF Downloads 267
5490 Sewage Induced Behavioural Responses in an Air-Breathing Fish, Pangasius pangasius

Authors: Sasikala Govindaraj, P. Palanisamy, G. M. Natarajan

Abstract:

Domestic sewage poses major threats to the aquatic environment in third world countries due to lack of technical and economic sources which can have significant impacts on fish. The tolerance limits to toxicants found in domestic effluents vary among species and their integrative effects may lead to reproductive failure and reduction of survival and growth of the more sensitive fish species. The mechanism of action of toxic substances upon various concentrations of sewage was taken aiming to evaluate locomotory, physiological, neurological and morbidity response of fish. The rapid biomonitoring assessment technique for qualitative evaluation of various industrial pollutants, behavioral responses of an air-breathing fish Pangasius pangasius were used as biomarkers for water quality assessment. The present investigation concluded that sewage is highly toxic to the fish and severely affects their physiology and behavior.

Keywords: air-breathing organs, behavioral, locomotory, morbidity, neurological, physiological, sewage

Procedia PDF Downloads 277
5489 Responses of Grain Yield, Anthocyanin and Antioxidant Capacity to Water Condition in Wetland and Upland Purple Rice Genotypes

Authors: Supaporn Yamuangmorn, Chanakan Prom-U-Thai

Abstract:

Wetland and upland purple rice are the two major types classified by its original ecotypes in Northern Thailand. Wetland rice is grown under flooded condition from transplanting until the mutuality, while upland rice is naturally grown under well-drained soil known as aerobic cultivations. Both ecotypes can be grown and adapted to the reverse systems but little is known on its responses of grain yield and qualities between the 2 ecotypes. This study evaluated responses of grain yield as well as anthocyanin and antioxidant capacity between the wetland and upland purple rice genotypes grown in the submerged and aerobic conditions. A factorial arrangement in a randomized complete block design (RCBD) with two factors of rice genotype and water condition were carried out in three replications. The two wetland genotypes (Kum Doi Saket: KDK and Kum Phayao: KPY) and two upland genotypes (Kum Hom CMU: KHCMU and Pieisu1: PES1) were used in this study by growing under submerged and aerobic conditions. Grain yield was affected by the interaction between water condition and rice genotype. The wetland genotypes, KDK and KPY grown in the submerged condition produced about 2.7 and 0.8 times higher yield than in the aerobic condition, respectively. The 0.4 times higher grain yield of upland genotype (PES1) was found in the submerged condition than in the aerobic condition, but no significant differences in KHCMU. In the submerged condition, all genotypes produced higher yield components of tiller number, panicle number and percent filled grain than in the aerobic condition by 24% and 32% and 11%, respectively. The thousand grain weight and spikelet number were affected by water condition differently among genotypes. The wetland genotypes, KDK and KPY, and upland genotype, PES1, grown in the submerged condition produced about 19-22% higher grain weight than in the aerobic condition. The similar effect was found in spikelet number which the submerged condition of wetland genotypes, KDK and KPY, and the upland genotype, KHCMU, had about 28-30% higher than the aerobic condition. In contrast, the anthocyanin concentration and antioxidant capacity were affected by both the water condition and genotype. Rice grain grown in the aerobic condition had about 0.9 and 2.6 times higher anthocyanin concentration than in the submerged condition was found in the wetland rice, KDK and upland rice, KHCMU, respectively. Similarly, the antioxidant capacity of wetland rice, KDK and upland rice, KHCMU were 0.5 and 0.6 times higher in aerobic condition than in the submerged condition. There was a negative correlation between grain yield and anthocyanin concentration in wetland genotype KDK and upland genotype KHCMU, but it was not found in the other genotypes. This study indicating that some rice genotype can be adapted in the reverse ecosystem in both grain yield and quality, especially in the wetland genotype KPY and upland genotype PES1. To maximize grain yield and quality of purple rice, proper water management condition is require with a key consideration on difference responses among genotypes. Increasing number of rice genotypes in both ecotypes is needed to confirm their responses on water management.

Keywords: purple rice, water condition, anthocyanin, grain yield

Procedia PDF Downloads 157
5488 The Next Frontier for Mobile Based Augmented Reality: An Evaluation of AR Uptake in India

Authors: K. Krishna Milan Rao, Nelvin Joseph, Praveen Dwarakanath

Abstract:

Augmented and Virtual Realties is quickly becoming a hotbed of activity with millions of dollars being spent on R & D and companies such as Google and Microsoft rushing to stake their claim. Augmented reality (AR) is however marching ahead due to the spread of the ideal AR device – the smartphone. Despite its potential, there remains a deep digital divide between the Developed and Developing Countries. The Technological Acceptance Model (TAM) and Hofstede cultural dimensions also predict the behaviour intention to uptake AR in India will be large. This paper takes a quantified approach by collecting 340 survey responses to AR scenarios and analyzing them through statistics. The Survey responses show that the Intention to Use, Perceived Usefulness and Perceived Enjoyment dimensions are high among the urban population in India. This along with the exponential smartphone indicates that India is on the cusp of a boom in the AR sector.

Keywords: mobile augmented reality, technology acceptance model, Hofstede, cultural dimensions, India

Procedia PDF Downloads 244
5487 A Virtual Electrode through Summation of Time Offset Pulses

Authors: Isaac Cassar, Trevor Davis, Yi-Kai Lo, Wentai Liu

Abstract:

Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them.

Keywords: electrical stimulation, neuroprosthesis, retinal implant, retinal prosthesis, virtual electrode

Procedia PDF Downloads 296
5486 Using Mechanical Alloying for Verification of Predicted Glass Forming Composition Range

Authors: F. Saadi, M. Fatahi, M. Heidari

Abstract:

Aim of this work was to determine the approximate glass forming composition range of Ni-Sn system for the alloys produced by mechanical alloying. It was predicted by Miedema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Ni-40Sn had the most susceptibility to produce amorphous alloy. In the next stage, some different compositions of Ni-Sn were mechanically alloyed, where one of them had the proper predicted composition. Products were characterized by XRD analysis. There was a good agreement between calculation and experiments, in which Ni-40Sn alloy had the most amorphization degree.

Keywords: Ni-Sn system, mechanical alloying, Amorphous alloy, Miedema model

Procedia PDF Downloads 426
5485 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning

Procedia PDF Downloads 139
5484 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads

Authors: Chinazo Onyeka Eziuzo

Abstract:

This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.

Keywords: simulation, control, wind turbine, OpenFAST

Procedia PDF Downloads 119
5483 From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds

Authors: Hounyèmè Romuald, Mama Daouda, Argillier Christine

Abstract:

The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data.

Keywords: pressure proxies, bayesian inference, bioindicators, acadjas, functional traits

Procedia PDF Downloads 77
5482 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology

Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó

Abstract:

Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.

Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants

Procedia PDF Downloads 179
5481 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.

Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan

Procedia PDF Downloads 404
5480 Friction and Wear Behavior of Zr-Nb Alloy Under Different Conditions

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are generally used for designing the core components of nuclear reactors due to their good mechanical and tribological properties. Some core components are subjected to flow-induced vibrations resulting in wear of these components due to their interaction with one another. To simulate these conditions, low amplitude reciprocating wear tests are conducted at room temperature and high temperature (260 degrees Celsius) between Zr-2.5Nb alloy and SS-410. The tests are conducted at a frequency range of 5 Hz to 25 Hz and an amplitude range of 200 µm to 600 µm. Friction and wear responses were recorded and correlated with the change in parameters. Worn surfaces are analysed using scanning electron microscopy (SEM) and optical profilometer. Elemental changes on the worn surfaces were determined using energy dispersive spectroscopy (EDS). The coefficient of friction (COF) increases with increasing temperature and decreases with increasing frequency. Adhesive wear is found to be the dominant wear mechanism which increases at high temperature.

Keywords: nuclear reactor, Zr-2.5Nb, SS-410, friction and wear

Procedia PDF Downloads 72
5479 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites

Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar

Abstract:

Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.

Keywords: Kenaf fibre, epoxy, composite, fibre

Procedia PDF Downloads 278
5478 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: electrospinning, gelatin, silk fibroin, mechanical properties, nanocomposites

Procedia PDF Downloads 145
5477 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of adjuvant polycarboxylate superplasticizer on the workability of these and their action deflocculating of the fine recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0/5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption

Procedia PDF Downloads 328
5476 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 272
5475 Review and Evaluation of Viscose Damper on Structural Responses

Authors: Ehsan Sadie

Abstract:

Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.

Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper

Procedia PDF Downloads 109
5474 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: dynamic analysis, high frequency, integration method, overshoot, weak instability

Procedia PDF Downloads 215
5473 Modelling Tyre Rubber Materials for High Frequency FE Analysis

Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia

Abstract:

Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.

Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity

Procedia PDF Downloads 188
5472 Photoelastic Analysis of the Proximal Femur in Deviations of the Mechanical Axis of the Lower Limb

Authors: S. F. Fakhouri, M.M. Shimano, D. Maranho, C. A. Araújo, M. V. Guimarães, A. C. Shimano, J. B. Volpon

Abstract:

Pathological deviations of the mechanical axis of the lower limbs deeply alter the stress distributions on the femur and tibia and the hip, knee, and ankle articulations. The purpose of this research was to assess the effects of pathological deviations in different levels of the lower limbs in the distribution of stress in the proximal femur region using photoelasticity of plane transmission. For most of the types of deviations studied, the results showed that the internal stress was generally higher in the calcar region than in the trochanteric region, followed by the third distal of the femur head. This study allowed for the development of better criteria for the correction of angular deviations and helped identify the deviations that are most harmful to the mechanical axis in terms of the effects on the bone and the articular effort of the lower limbs. These results will lead to future improvements in studies on prostheses.

Keywords: alignment, deviations, inferior limbs, mechanical axis, photoelasticity, stress

Procedia PDF Downloads 378
5471 The Effect of Different Surface Cleaning Methods on Porosity Formation and Mechanical Property of AA6xxx Aluminum Gas Metal Arc Welds

Authors: Fatemeh Mirakhorli

Abstract:

Porosity is the main issue during welding of aluminum alloys, and surface cleaning has a critical influence to reduce the porosity level by removing the oxidized surface layer before fusion welding. Developing an optimum and economical surface cleaning method has an enormous benefit for aluminum welding industries to reduce costs related to repairing and repeating welds as well as increasing the mechanical properties of the joints. In this study, several mechanical and chemical surface cleaning methods were examined for butt joint welding of 2 mm thick AA6xxx alloys using ER5556 filler metal. The effects of each method on porosity formation and tensile properties are evaluated. It has been found that, compared to the conventional mechanical cleaning method, the use of chemical cleaning leads to an important reduction in porosity level even after a significant delay between cleaning and welding. The effect of the higher porosity level in the fusion zone to reduce the tensile strength of the welds is shown.

Keywords: gas metal arc welding (GMAW), aluminum alloy, surface cleaning, porosity formation, mechanical property

Procedia PDF Downloads 131
5470 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 202
5469 Performance Evaluation of Iar Multi Crop Thresher

Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam

Abstract:

Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.

Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher

Procedia PDF Downloads 345