Search results for: maxilla reconstruction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 656

Search results for: maxilla reconstruction

416 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 65
415 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 67
414 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
413 Research on the Landscape Reconstruction of Old Industrial Plant Area from the Perspective of Communication Studies

Authors: Minghao Liu

Abstract:

This paper uses the theory of communication in the context of mass communication, from the construction of communication symbols, communication flow organization, communication experience perception of the three levels of the old industrial factory landscape transformation research and analysis, summarizes the old industrial factory landscape in the communication process to create strategies and design methods for the old industrial factories carried by the urban culture of how to enter the public's life more widely in the existing environment and be familiar with the significance of the exploration, to provide a new idea for the renewal of the urban stock, and ultimately to achieve the sustainable development of the city.

Keywords: communication, old industrial factor, urban renewal, landscape design

Procedia PDF Downloads 98
412 Renovation of Dilapidated Areas and Sustainable Reconstruction of Various Parts of Tehran, Iran

Authors: Alireza Rahpeyma

Abstract:

One of the most significant challenges faced by cities is inefficient and deteriorated urban fabric. Deteriorated areas bring about numerous issues, including economic, social, physical, and infrastructural problems, sewage management, environmental concerns, and security issues. One of the crucial necessities of modern urban life is the revitalization and renovation of these urban fabrics. Another important aspect is preserving a cohesive cultural and social identity during the urban renewal process. Urban renovation and upgrading are not a one-time occurrence but rather an ongoing process that ultimately needs to become ingrained in the system. This process is not swift; it involves sensitive and intricate stages that require well-designed plans within short, medium, and long-term timeframes. To revitalize dilapidated areas, a comprehensive understanding of the urban region's sustainability is essential. The goal of this study is to provide a suitable model for the upgrading and renewal of areas 2, 4, 5, 7, 8, and 10 in Tehran, preserving the heritage within these urban fabrics (urban assets), including the valuable morphologies of these areas, to prevent financial wastage. This study was conducted descriptively and analytically using the SWOT technique and GIS software. The research results regarding urban upgrading and renewal bring about the following points: 1) Urban upgrading and renewal ensure satisfactory efficiency, justice, environmental quality, safety and security, hygiene, sewage management, and the comfort and aesthetics of urban spaces. 2) Employing the above processes in old city centers re-establishes the historical and cultural connection between people and their past, a past that is evolving and improving and will not repeat itself. 3) Despite the expansion and growth of Iranian cities, cultural and national identity can be preserved by adhering to healthy urban revitalization principles. 4) Proper urban upgrading and renewal prevent social fragmentation, deviant behavioral patterns, psychological and occupational disorders, and financial losses. In general, preserving the identity and urban life in renovation and upgrading must be comprehensive, encompassing various dimensions, including physical, social, economic, political, and administrative aspects.

Keywords: dilapidated areas, renovation, sustainable reconstruction, Tehran-Iran

Procedia PDF Downloads 55
411 Quality of Life after Damage Control Laparotomy for Trauma

Authors: Noman Shahzad, Amyn Pardhan, Hasnain Zafar

Abstract:

Introduction: Though short term survival advantage of damage control laparotomy in management of critically ill trauma patients is established, there is little known about the long-term quality of life of these patients. Facial closure rate after damage control laparotomy is reported to be 20-70 percent. Abdominal wall reconstruction in those who failed to achieve facial closure is challenging and can potentially affect quality of life of these patients. Methodology: We conducted retrospective matched cohort study. Adult patients who underwent damage control laparotomy from Jan 2007 till Jun 2013 were identified through medical record. Patients who had concomitant disabling brain injury or limb injuries requiring amputation were excluded. Age, gender and presentation time matched non exposure group of patients who underwent laparotomy for trauma but no damage control were identified for each damage control laparotomy patient. Quality of life assessment was done via telephonic interview at least one year after the operation, using Urdu version of EuroQol Group Quality of Life (QOL) questionnaire EQ5D after permission. Wilcoxon signed rank test was used to compare QOL scores and McNemar test was used to compare individual parameters of QOL questionnaire. Study was approved by institutional ethical review committee. Results: Out of 32 patients who underwent damage control laparotomy during study period, 20 fulfilled the selection criteria for which 20 matched controls were selected. Median age of patients (IQ Range) was 33 (26-40) years. Facial closure rate in damage control laparotomy group was 40% (8/20). One third of those who did not achieve facial closure (4/12) underwent abdominal wall reconstruction. Self-reported QOL score of damage control laparotomy patients was significantly worse than non-damage control group (p = 0.032). There was no statistically significant difference in two groups regarding individual QOL measures. Significantly, more patients in damage control group were requiring use of abdominal binder, and more patients in damage control group had to either change their job or had limitations in continuing previous job. Our study was not adequately powered to detect factors responsible for worse QOL in damage control group. Conclusion: Quality of life of damage control patients is worse than their age and gender matched patients who underwent trauma laparotomy but not damage control. Adequately powered studies need to be conducted to explore factors responsible for this finding for potential improvement.

Keywords: damage control laparotomy, laparostomy, quality of life

Procedia PDF Downloads 279
410 Analyzing Social and Political Constraints in Development Aid Projects in Post Conflict Region of SWAT, Pakistan

Authors: Faizan Sultan

Abstract:

Non-government organizations (NGOs) in Pakistan have the potential to deliver services such as health, education, and rural development through targeting the most vulnerable communities of society. Having this significant importance, NGOs are facing numerous challenges in service delivery. So, there is a need to identify the challenges NGOs face in community development, particularly post-conflict development. The current study has analyzed the social and political constraints in development projects in the post-conflict region of the Swat district of Khyber Pakhtunkhwa. The objectives of this study are “What are the social and political constraints faced by the nongovernmental organizations in the implementation of development aid Projects in post-conflict development of Swat and to examine the challenges in coordination mechanism between government departments, NGOs, and community in reconstruction activities”. This research is based upon both the quantitative and qualitative data that is being gathered from the NGO representatives, government officials, and community members who were involved in post-conflict development interventions in the Swat region. A purposive sampling technique was used to select respondents from the community members/activists (25 in number) and government and NGO officials (10 in number). Based on analysis against our objectives, NGOs have faced numerous constraints such as Insecurity, Negative Perceptions about NGOs, restrictions on women's mobility, government policies and regulations, lack of coordination and networking, trust deficit, and political interference while implementing their project interventions. These findings concluded that constraints have affected project implementation to a greater extent, including women's participation, involvement of marginalized populations, and equal distribution of resources. In the Swat region, NGOs cannot openly discuss sensitive projects such as human rights, gender-based projects, or women empowerment as these issues are very sensitive to the local community due to their cultural values. The community may not allow their females to go outside their homes as this region is a male-dominated society. Similarly, lack of communication and poor networking for the arrangements of the project meetings were also the major constraints.

Keywords: national disaster management authority, millennium development goals, provincial disaster management authority, provincial reconstruction, rehabilitation and settlement authority

Procedia PDF Downloads 59
409 Educaton for Social Reconstruction: Impact of Social Terrorism on Women Education in Nigeria

Authors: Theresa Chinyere ONU

Abstract:

This paper examines the effect of social terrorism on education in Nigeria. The article looked into some prevailing conditions of international political unrest and insecurity. The fear and risk of these conditions to national security and the struggle for power establishment which has further intensified and taken the shape of terrorism has imposed devastating effects on the growth and prosperity of Nigeria; as traffic patterns get disturbed, hospitals and schools get dysfunctional. This has also affected the educational standard in Nigeria as parents are no longer comfortable in sending their children to schools in some states for the fear of terrorist attacks. The study emphasized the integrated the effort of the government management institutions.

Keywords: education, social terrorism, women, Nigeria

Procedia PDF Downloads 583
408 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model

Authors: Snehal G. Teli, R. J. Shelke

Abstract:

CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.

Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images

Procedia PDF Downloads 75
407 Impact of Relaxing Incisions on Maxillofacial Growth Following Sommerlad–Furlow Modified Technique in Patients with Isolated Cleft Palate: A Preliminary Comparative Study

Authors: Sadam Elayah, Yang Li, Bing Shi

Abstract:

Background: The impact of relaxing incisions on maxillofacial growth during palatoplasty remains a topic of debate, and further research is needed to understand its effects fully. Thus, the current study is the first long-term study that aimed to assess the maxillofacial growth of patients with isolated cleft palate following the Sommerlad-Furlow modified (S.F) technique and to estimate the impact of relaxing incisions on maxillofacial growth following S.F technique in patients with isolated cleft palate. Methods: A total of 85 participants, 55 patients with non-syndromic isolated soft and hard cleft palate underwent primary palatoplasty with our technique (30 patients received the Sommerlad-Furlow modified technique without relaxing incision (S.F+RI group), and 25 received Sommerlad-Furlow modified technique without relaxing (S.F-RI group) with no significant difference found between them regarding the cleft type, cleft width, and age at repair. While the other 30 were normal participants with skeletal class I pattern (C group). The control group was matched with the study group in number, age, and sex. All the study variables were measured using stable landmarks, including 12 linear and 10 angular variants. Results: The mean ages at collection of cephalograms were 6.03±0.80 in the S.F+RI group, 5.96±0.76 in the S.F-RI group, and 5.91±0.87 in the C group. Regarding cranial base, the results showed no statistically significant differences between the three groups in S-N and S-N-Ba. The S.F+R.I group had a significantly shorter S-Ba than the S.F-R.I & C groups (P= 0.01). However, there was no statistically significant difference between the S.F-R.I & C groups (P=0.80). Regarding the skeletal maxilla, there was no significant difference between the S.F+R.I and S.F-R.I groups in all linear measurements (N-ANS, S- PM & SN-PP ) except Co-A, the S.F+R.I group had significantly shorter Co-A than the S.F-R.I & C groups (P= <0.01). While the angular measurement, S.F+R.I group had significantly less SNA angle than the S.F-R.I & C groups (P= <0.01). Regarding mandibular bone, there were no statistically significant differences in all linear and angular mandibular measurements between the S.F+R.I and S.F-R.I groups. Regarding intermaxillary relation, the S.F+R.I group had significant differences in Co-Gn - Co-A and ANB compared to the S.F-R.I & C groups (P= <0.01). There was no statistically significant difference in PP-MP among the three groups. Conclusion: As a preliminary report, the Sommerlad-Furlow modified technique without relaxing incisions was found to have good maxillary positioning in the face and a satisfactory intermaxillary relationship compared to the Sommerlad-Furlow modified technique with relaxing incisions.

Keywords: relaxing incisions, cleft palate, palatoplasty, maxillofacial growth

Procedia PDF Downloads 111
406 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: least square, neighbor joining, phylogenetic tree, wild dog pack

Procedia PDF Downloads 320
405 Reconsidering the Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kelum N. Manamendra-Arachchi, Kalangi Rodrigo

Abstract:

Bones, teeth, and shells have been acknowledged over the last two centuries as evidence of chronology, Palaeo-environment, and human activity. Faunal traces are valid evidence of past situations because they have properties that have not changed over long periods of time. Sri Lanka has been known as an Island, which has a diverse variation of prehistoric occupation among ecological zones. Defining the Paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated ' on-site ' Palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5 degrees. Based on Semnopithecus Priam (Gray Langur) remains unearned from wet zone prehistoric caves, it has been argued that periods of momentous climate changes during the LGM and Terminal Pleistocene/Early Holocene boundary, with a recognizable preference for semi-open ‘Intermediate’ rainforest or edges. Continuous Genus Acavus and Oligospira occupation along with uninterrupted horizontal pervasive of Canarium sp. (‘kekuna’ nut) have proven that temperatures in the lowland rain forests have not changed by at least 5 oC over the last 50,000 years. Site Catchment or Territorial analysis cannot be no longer defensible, due to time-distance based factors as well as optimal foraging theory failed as a consequences of prehistoric people were aware of the decrease in cost-benefit ratio and located sites, and generally played out a settlement strategy that minimized the ratio of energy expanded to energy produced.

Keywords: palaeo-environment, prehistory, palaeo-ecology, zooarchaeology

Procedia PDF Downloads 122
404 An Online 3D Modeling Method Based on a Lossless Compression Algorithm

Authors: Jiankang Wang, Hongyang Yu

Abstract:

This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.

Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image

Procedia PDF Downloads 82
403 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System

Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng

Abstract:

Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.

Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging

Procedia PDF Downloads 366
402 Self-Inflating Soft Tissue Expander Outcome for Alveolar Ridge Augmentation a Randomized Controlled Clinical and Histological Study

Authors: Alaa T. Ali, Nevine H. Kheir El Din, Ehab S. Abdelhamid, Ahmed E. Amr

Abstract:

Objective: Severe alveolar bone resorption is usually associated with a deficient amount of soft tissues. soft tissue expansion is introduced to provide an adequate amount of soft tissue over the grafted area. This study aimed to assess the efficacy of sub-periosteal self-inflating osmotic tissue expanders used as preparatory surgery before horizontal alveolar ridge augmentation using autogenous onlay block bone graft. Methods: A prospective randomized controlled clinical trial was performed. Sixteen partially edentulous patients demanding horizontal bone augmentation in the anterior maxilla were randomly assigned to horizontal ridge augmentation with autogenous bone block grafts harvested from the mandibular symphysis. For the test group, soft tissue expanders were placed sub-periosteally before horizontal ridge augmentation. Impressions were taken before and after STE, and the cast models were optically scanned and superimposed to be used for volumetric analysis. Horizontal ridge augmentation was carried out after STE completion. For the control group, a periosteal releasing incision was performed during bone augmentation procedures. Implants were placed in both groups at re-entry surgery after six months period. A core biopsy was taken. Histomorphometric assessment for newly formed bone surface area, mature collagen area fraction, the osteoblasts count, and blood vessel count were performed. The change in alveolar ridge width was evaluated through bone caliper and CBCT. Results: Soft tissue expander successfully provides a Surplus amount of soft tissues in 5 out of 8 patients in the test group. Complications during the expansion period were perforation through oral mucosa occurred in two patients. Infection occurred in one patient. The mean soft tissue volume gain was 393.9 ± 322mm. After 6 months. The mean horizontal bone gains for the test and control groups were 3.14 mm and 3.69 mm, respectively. Conclusion: STE with a sub-periosteal approach is an applicable method to achieve an additional soft tissue and to reduce bone block graft exposure and wound dehiscence.

Keywords: soft tissue expander, ridge augmentation, block graft, symphysis bone block

Procedia PDF Downloads 125
401 Applications of Probabilistic Interpolation via Orthogonal Matrices

Authors: Dariusz Jacek Jakóbczak

Abstract:

Mathematics and computer science are interested in methods of 2D curve interpolation and extrapolation using the set of key points (knots). A proposed method of Hurwitz- Radon Matrices (MHR) is such a method. This novel method is based on the family of Hurwitz-Radon (HR) matrices which possess columns composed of orthogonal vectors. Two-dimensional curve is interpolated via different functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to build the orthogonal matrix operator and how to use it in a process of curve reconstruction.

Keywords: 2D data interpolation, hurwitz-radon matrices, MHR method, probabilistic modeling, curve extrapolation

Procedia PDF Downloads 525
400 Reconstructing the Segmental System of Proto-Graeco-Phrygian: a Bottom-Up Approach

Authors: Aljoša Šorgo

Abstract:

Recent scholarship on Phrygian has begun to more closely examine the long-held belief that Greek and Phrygian are two very closely related languages. It is now clear that Graeco-Phrygian can be firmly postulated as a subclade of the Indo-European languages. The present paper will focus on the reconstruction of the phonological and phonetic segments of Proto-Graeco-Phrygian (= PGPh.) by providing relevant correspondence sets and reconstructing the classes of segments. The PGPh. basic vowel system consisted of ten phonemic oral vowels: */a e o ā ē ī ō ū/. The correspondences of the vowels are clear and leave little open to ambiguity. There were four resonants and two semi-vowels in PGPh.: */r l m n i̯ u̯/, which could appear in both a consonantal and a syllabic function, with the distribution between the two still being phonotactically predictable. Of note is the fact that the segments *m and *n seem to have merged when their phonotactic position would see them used in a syllabic function. Whether the segment resulting from this merger was a nasalized vowel (most likely *[ã]) or a syllabic nasal *[N̥] (underspecified for place of articulation) cannot be determined at this stage. There were three fricatives in PGPh.: */s h ç/. *s and *h are easily identifiable. The existence of *ç, which may seem unexpected, is postulated on the basis of the correspondence Gr. ὄς ~ Phr. yos/ιος. It is of note that Bozzone has previously proposed the existence of *ç ( < PIE *h₁i̯-) in an early stage of Greek even without taking into account Phrygian data. Finally, the system of stops in PGPh. distinguished four places of articulation (labial, dental, velar, and labiovelar) and three phonation types. The question of which three phonation types were actually present in PGPh. is one of great importance for the ongoing debate on the realization of the three series in PIE. Since the matter is still very much in dispute, we ought to, at this stage, endeavour to reconstruct the PGPh. system without recourse to the other IE languages. The three series of correspondences are: 1. Gr. T (= tenuis) ~ Phr. T; 2. Gr. D (= media) ~ Phr. T; 3. Gr. TA (= tenuis aspirata) ~ Phr. M. The first series must clearly be reconstructed as composed of voiceless stops. The second and third series are more problematic. With a bottom-up approach, neither the second nor the third series of correspondences are compatible with simple modal voicing, and the reflexes differ greatly in voice onset time. Rather, the defining feature distinguishing the two series was [±spread glottis], with ancillary vibration of the vocal cords. In PGPh. the second series was undergoing further spreading of the glottis. As the two languages split, this process would continue, but be affected by dissimilar changes in VOT, which was ultimately phonemicized in both languages as the defining feature distinguishing between their series of stops.

Keywords: bottom-up reconstruction, Proto-Graeco-Phrygian, spread glottis, syllabic resonant

Procedia PDF Downloads 50
399 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
398 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 452
397 3 Dimensional (3D) Assesment of Hippocampus in Alzheimer’s Disease

Authors: Mehmet Bulent Ozdemir, Sultan Çagirici, Sahika Pinar Akyer, Fikri Turk

Abstract:

Neuroanatomical appearance can be correlated with clinical or other characteristics of illness. With the introduction of diagnostic imaging machines, producing 3D images of anatomic structures, calculating the correlation between subjects and pattern of the structures have become possible. The aim of this study is to examine the 3D structure of hippocampus in cases with Alzheimer disease in different dementia severity. For this purpose, 62 female and 38 male- 68 patients’s (age range between 52 and 88) MR scanning were imported to the computer. 3D model of each right and left hippocampus were developed by a computer aided propramme-Surf Driver 3.5. Every reconstruction was taken by the same investigator. There were different apperance of hippocampus from normal to abnormal. In conclusion, These results might improve the understanding of the correlation between the morphological changes in hippocampus and clinical staging in Alzheimer disease.

Keywords: Alzheimer disease, hippocampus, computer-assisted anatomy, 3D

Procedia PDF Downloads 481
396 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 506
395 Ultra-deformable Drug-free Sequessome™ Vesicles (TDT 064) for the Treatment of Joint Pain Following Exercise: A Case Report and Clinical Data

Authors: Joe Collins, Matthias Rother

Abstract:

Background: Oral non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the relief of joint pain during and post-exercise. However, oral NSAIDs increase the risk of systemic side effects, even in healthy individuals, and retard recovery from muscle soreness. TDT 064 (Flexiseq®), a topical formulation containing ultra-deformable drug-free Sequessome™ vesicles, has demonstrated equivalent efficacy to oral celecoxib in reducing osteoarthritis-associated joint pain and stiffness. TDT 064 does not cause NSAID-related adverse effects. We describe clinical study data and a case report on the effectiveness of TDT 064 in reducing joint pain after exercise. Methods: Participants with a pain score ≥3 (10-point scale) 12–16 hours post-exercise were randomized to receive TDT 064 plus oral placebo, TDT 064 plus oral ketoprofen, or ketoprofen in ultra-deformable phospholipid vesicles plus oral placebo. Results: In the 168 study participants, pain scores were significantly higher with oral ketoprofen plus TDT 064 than with TDT 064 plus placebo in the 7 days post-exercise (P = 0.0240) and recovery from muscle soreness was significantly longer (P = 0.0262). There was a low incidence of adverse events. These data are supported by clinical experience. A 24-year-old male professional rugby player suffered a traumatic lisfranc fracture in March 2014 and underwent operative reconstruction. He had no relevant medical history and was not receiving concomitant medications. He had undergone anterior cruciate ligament reconstruction in 2008. The patient reported restricted training due to pain (score 7/10), stiffness (score 9/10) and poor function, as well as pain when changing direction and running on consecutive days. In July 2014 he started using TDT 064 twice daily at the recommended dose. In November 2014 he noted reduced pain on running (score 2-3/10), decreased morning stiffness (score 4/10) and improved joint mobility and was able to return to competitive rugby without restrictions. No side effects of TDT 064 were reported. Conclusions: TDT 064 shows efficacy against exercise- and injury-induced joint pain, as well as that associated with osteoarthritis. It does not retard muscle soreness recovery after exercise compared with an oral NSAID, making it an alternative approach for the treatment of joint pain during and post-exercise.

Keywords: exercise, joint pain, TDT 064, phospholipid vesicles

Procedia PDF Downloads 480
394 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets

Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei

Abstract:

The paper is a comparative study of two classical variants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time in classical CPU and, alternatively, in parallel GPU implementation.

Keywords: convex feasibility problem, convergence analysis, inpainting, parallel projection methods

Procedia PDF Downloads 174
393 Application of Optical Method Based on Laser Devise as Non-Destructive Testing for Calculus of Mechanical Deformation

Authors: R. Daïra, V. Chalvidan

Abstract:

We present the speckle interferometry method to determine the deformation of a piece. This method of holographic imaging using a CCD camera for simultaneous digital recording of two states object and reference. The reconstruction is obtained numerically. This latest method has the advantage of being simpler than the methods currently available, and it does not suffer the holographic configuration faults online. Furthermore, it is entirely digital and avoids heavy analysis after recording the hologram. This work was carried out in the laboratory HOLO 3 (optical metrology laboratory in Saint Louis, France) and it consists in controlling qualitatively and quantitatively the deformation of object by using a camera CCD connected to a computer equipped with software of Fringe Analysis.

Keywords: speckle, nondestructive testing, interferometry, image processing

Procedia PDF Downloads 497
392 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering

Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song

Abstract:

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection

Procedia PDF Downloads 400
391 Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation

Authors: Hangsik Shin

Abstract:

The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms.

Keywords: peak detection, photoplethysmography, sampling, signal reconstruction

Procedia PDF Downloads 368
390 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 121
389 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 522
388 Rebuilding Health Post-Conflict: Case Studies from Afghanistan, Cambodia, and Mozambique

Authors: Spencer Rutherford, Shadi Saleh

Abstract:

War and conflict negatively impact all facets of a health system; services cease to function, resources become depleted, and any semblance of governance is lost. Following cessation of conflict, the rebuilding process includes a wide array of international and local actors. During this period, stakeholders must contend with various trade-offs, including balancing sustainable outcomes with immediate health needs, introducing health reform measures while also increasing local capacity, and reconciling external assistance with local legitimacy. Compounding these factors are additional challenges, including coordination amongst stakeholders, the re-occurrence of conflict, and ulterior motives from donors and governments, to name a few. Therefore, the present paper evaluated health system development in three post-conflict countries over a 12-year timeline. Specifically, health policies, health inputs (such infrastructure and human resources), and measures of governance, from the post-conflict periods of Afghanistan, Cambodia, and Mozambique, were assessed against health outputs and other measures. All post-conflict countries experienced similar challenges when rebuilding the health sector, including; division and competition between donors, NGOs, and local institutions; urban and rural health inequalities; and the re-occurrence of conflict. However, countries also employed unique and effective mechanisms for reconstructing their health systems, including; government engagement of the NGO and private sector; integration of competing factions into the same workforce; and collaborative planning for health policy. Based on these findings, best-practice development strategies were determined and compiled into a 12-year framework. Briefly, during the initial stage of the post-conflict period, primary stakeholders should work quickly to draft a national health strategy in collaboration with the government, and focus on managing and coordinating NGOs through performance-based partnership agreements. With this scaffolding in place, the development community can then prioritize the reconstruction of primary health care centers, increasing and retaining health workers, and horizontal integration of immunization services. The final stages should then concentrate on transferring ownership of the health system national institutions, implementing sustainable financing mechanisms, and phasing-out NGO services. Overall, these findings contribute post-conflict health system development by evaluating the process holistically and along a timeline and can be of further use by healthcare managers, policy-makers, and other health professionals.

Keywords: Afghanistan, Cambodia, health system development, health system reconstruction, Mozambique, post-conflict, state-building

Procedia PDF Downloads 159
387 Governance Networks of China’s Neighborhood Micro-Redevelopment: The Case of Haikou

Authors: Lin Zhang

Abstract:

Neighborhood redevelopment is vital to improve residents’ living environment, and there has been a national neighborhood micro-redevelopment initiative in China since 2020, which is largely different from the previous large-scale demolition and reconstruction projects. Yet, few studies systematically examine the new interactions of multiple actors in this initiative. China’s neighborhood (micro-) redevelopment is a kind of governance network, and the complexity perspective could reflect the dynamic nature of multiple actors and their relationships in governance networks. In order to better understand the fundamental shifts of governance networks in China’s neighborhood micro-redevelopment, this paper adopted a theoretical framework of complexity in governance networks and analyzed the new governance networks of neighborhood micro-redevelopment projects in Haikou accordingly.

Keywords: neighborhood redevelopment, governance, networks, Haikou

Procedia PDF Downloads 89