Search results for: high quality image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28533

Search results for: high quality image

28293 Utilization of Silicon for Sustainable Rice Yield Improvement in Acid Sulfate Soil

Authors: Bunjirtluk Jintaridth

Abstract:

Utilization of silicon for sustainable rice cultivation in acid sulfate soils was studied for 2 years. The study was conducted on Rungsit soils in Amphoe Tanyaburi, Pathumtani Province. The objectives of this study were to assess the effect of high quality organic fertilizer in combination with silicon and chemical fertilizer on rice yield, chemical soil properties after using soil amendments, and also to assess the economic return. A Randomized Complete Block Design (RCBD) with 10 treatments and 3 replications were employed. The treatments were as follows: 1) control 2) chemical fertilizer (recommended by Land Development Department, LDD 3) silicon 312 kg/ha 4) high quality organic fertilizer at 1875 kg/ha (the recommendation rate by LDD) 5) silicon 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 6) silicon at the 312 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 7) silicon 156 kg/ha in combination with chemical fertilizer 8) silicon at the 312 kg/ha in combination with chemical fertilizer 9) silicon 156 kg/ha in combination with ½ chemical fertilizer rate, and 10) silicon 312 kg/ha in combination with ½ chemical fertilizer rate. The results of 2 years indicated the treatment tended to increase soil pH (from 5.1 to 4.7-5.5), percentage of organic matter (from 2.43 to 2.54 - 2.94%); avail. P (from 7.5 to 7-21 mg kg-1 P; ext. K (from 616 to 451-572 mg kg-1 K), ext Ca (from 1962 to 2042.3-4339.7 mg kg-1 Ca); ext Mg (from 1586 to 808.7-900 mg kg-1 Mg); but decrease the ext. Al (from 2.56 to 0.89-2.54 cmol kg-1 Al. Two years average of rice yield, the highest yield was obtained from silicon 156 kg/ha application in combination with high quality organic fertilizer 300 kg/rai (3770 kg/ha), or using silicon at the 312 kg/ha combination with high quality organic fertilizer 300 kg/rai. (3,750 kg/ha). It was noted that chemical fertilizer application with 156 and 312 kg/ha silicon gave only 3,260 และ 3,133 kg/ha, respectively. On the other hand, half rate of chemical fertilizer with 156 and 312 kg/ha with silicon gave the yield of 2,934 และ 3,218 kg/ha, respectively. While high quality organic fertilizer only can produce 3,318 kg/ha as compare to rice yield of 2,812 kg/ha from control. It was noted that the highest economic return was obtained from chemical fertilizer treated plots (886 dollars/ha). Silicon application at the rate of 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha gave the economic return of 846 dollars/ha, while 312 kg/ha of silicon with chemical fertilizer gave the lowest economic return (697 dollars/ha).

Keywords: rice, high quality organic fertilizer, acid sulfate soil, silicon

Procedia PDF Downloads 164
28292 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 232
28291 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
28290 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
28289 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: integral production, level set method, morphological operation, segmentation

Procedia PDF Downloads 317
28288 Current Starved Ring Oscillator Image Sensor

Authors: Devin Atkin, Orly Yadid-Pecht

Abstract:

The continual demands for increasing resolution and dynamic range in CMOS image sensors have resulted in exponential increases in the amount of data that needs to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various new readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a new light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.

Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator

Procedia PDF Downloads 87
28287 An Efficient Clustering Technique for Copy-Paste Attack Detection

Authors: N. Chaitawittanun, M. Munlin

Abstract:

Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.

Keywords: image detection, forgery image, copy-paste, attack detection

Procedia PDF Downloads 338
28286 Image Steganography Using Least Significant Bit Technique

Authors: Preeti Kumari, Ridhi Kapoor

Abstract:

 In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.

Keywords: steganography, LSB, encoding, information hiding, color image

Procedia PDF Downloads 474
28285 Employer Brand Image and Employee Engagement: An Exploratory Study in Britain

Authors: Melisa Mete, Gary Davies, Susan Whelan

Abstract:

Maintaining a good employer brand image is crucial for companies since it has numerous advantages such as better recruitment, retention and employee engagement, and commitment. This study aims to understand the relationship between employer brand image and employee satisfaction and engagement in the British context. A panel survey data (N=228) is tested via the regression models from the Hayes (2012) PROCESS macro, in IBM SPSS 23.0. The results are statistically significant and proves that the more positive employer brand image, the greater employee’ engagement and satisfaction, and the greater is employee satisfaction, the greater their engagement.

Keywords: employer brand, employer brand image, employee engagement, employee satisfaction

Procedia PDF Downloads 337
28284 Medical Images Enhancement Using New Dynamic Band Pass Filter

Authors: Abdellatif Baba

Abstract:

In order to facilitate medical images analysis by improving their quality and readability, we present in this paper a new dynamic band pass filter as a general and suitable operator for different types of medical images. Our objective is to enrich the details of any treated medical image to make it sufficiently clear enough to give an understood and simplified meaning even for unspecialized people in the medical domain.

Keywords: medical image enhancement, dynamic band pass filter, analysis improvement

Procedia PDF Downloads 289
28283 Comparing Image Processing and AI Techniques for Disease Detection in Plants

Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller

Abstract:

Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.

Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation

Procedia PDF Downloads 378
28282 A Study of Agile Based Approaches to Improve Software Quality

Authors: Gurmeet Kaur

Abstract:

Agile software development methods are being recognized as popular, and efficient approach to the development of software system that has a short delivery period with high quality also that meets customer requirements with zero defect. In agile software development, quality means quality of code where in the quality is maintained through the use of methods or approaches like refactoring, test driven development, behavior driven development, acceptance test driven development, and demand driven development. Software quality is measured in term of metrics such as the number of defects during development of software. Usage of above mentioned methods or approaches, reduces the possibilities of defects in developed software, and hence improve quality. This paper focuses on study of agile based quality methods or approaches for software development that ensures improved quality of software as well as reduced cost, and customer satisfaction.

Keywords: ATDD, BDD, DDD, TDD

Procedia PDF Downloads 172
28281 Evaluation of E-Government Service Quality

Authors: Nguyen Manh Hien

Abstract:

Service quality is the highest requirement from users, especially for the service in electronic government. During the past decades, it has become a major area of academic investigation. Considering this issue, there are many researches that evaluated the dimensions and e-service contexts. This study also identified the dimensions of service quality but focused on a new conceptual and provides a new methodological in developing measurement scales of e-service quality such as information quality, service quality and organization quality. Finally, the study will suggest a key factor to evaluate e-government service quality better.

Keywords: dimensionality, e-government, e-service, e-service quality

Procedia PDF Downloads 541
28280 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal

Authors: Belayneh Matebie, Michael Melese

Abstract:

The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.

Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF

Procedia PDF Downloads 53
28279 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 246
28278 Progress in Combining Image Captioning and Visual Question Answering Tasks

Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima

Abstract:

Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.

Keywords: image captioning, visual question answering, deep learning, natural language processing

Procedia PDF Downloads 73
28277 The Application of Image Analyzer to Study the Effects of Pericarp in the Imbibition Process of Melia dubia Seeds

Authors: Satya Srii, V., Nethra, N.

Abstract:

An image analyzer system is described to study the process of imbibition in Melia dubia seeds. The experimental system consisted of control C (seeds with intact pericarp) with two treatments, namely T1 (seeds with pericarp punctured) and T2 (naked seeds without pericarp). The measurement software in the image analyzer can determine the area and perimeter as descriptors of changes in seed size during swelling resulting from imbibition. Using the area and perimeter parameter, the imbibition process in C, T1, and T2 was described by a series of curves similar to the triphasic pattern of water uptake, with the extent and rate depending upon the treatment. Naked seeds without pericarp (T2) took lesser time to reach phase III during imbition followed by seeds with pericarp punctured (T1) while the seeds with intact pericarp (C) were the slowest to attain phase III. This shows the effect of pericarp in acting as a potential inhibitor to imbibition inducing a large delay in germination. The sensitivity and feasibility of the method to investigate individual seeds within a population imply that the image analyzer has high potential in seed biology studies.

Keywords: germination, imbibition, image analyzer, Melia dubia, pericarp

Procedia PDF Downloads 139
28276 A Modified Shannon Entropy Measure for Improved Image Segmentation

Authors: Mohammad A. U. Khan, Omar A. Kittaneh, M. Akbar, Tariq M. Khan, Husam A. Bayoud

Abstract:

The Shannon Entropy measure has been widely used for measuring uncertainty. However, in partial settings, the histogram is used to estimate the underlying distribution. The histogram is dependent on the number of bins used. In this paper, a modification is proposed that makes the Shannon entropy based on histogram consistent. For providing the benefits, two application are picked in medical image processing applications. The simulations are carried out to show the superiority of this modified measure for image segmentation problem. The improvement may be contributed to robustness shown to uneven background in images.

Keywords: Shannon entropy, medical image processing, image segmentation, modification

Procedia PDF Downloads 497
28275 Neuron Imaging in Lateral Geniculate Nucleus

Authors: Sandy Bao, Yankang Bao

Abstract:

The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement.

Keywords: lateral geniculate nucleus, matrix laboratory, neuroscience, visual cortex

Procedia PDF Downloads 279
28274 The Quality Health Services and Patient Satisfaction in Hospital

Authors: Nadia Fatima Zahra Malki

Abstract:

Quality is one of the most important modern management patterns that organizations seek to achieve in all areas and sectors in order to meet the needs and desires of customers and to remain and continuity, as they constitute a competitive advantage for the organization. and among the most prominent organizations that must be available on the quality factor are health organizations as they relate to the most valuable component of production. It is a person, and his health, and any error in it threatens his life and may lead to death, so she must provide health services of high quality to achieve the highest degree of satisfaction for the patient. This research aims to study the quality of health services and the extent of their impact on patient satisfaction, and this is through an applied study that relied on measuring the level of quality of health services in the university hospital center of Algeria and the extent of their impact on patient satisfaction according to the dimensions of the quality of health services, and we reached a conclusion that the determinants of the quality of health services It affects patient satisfaction, which necessitates developing health services according to patients' requirements and improving their quality to obtain patient satisfaction.

Keywords: health service, health quality, quality determinants, patient satisfaction

Procedia PDF Downloads 61
28273 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 419
28272 Influence of Dairy Cows Food on Uncooked Pressed Dough Cheese "Edam" Quality

Authors: Nougha Meriem, Sadouki Mohammed

Abstract:

Cheese quality is an important manufacturing requirement. It deals with traceability, from the dairy cows feed to the storage location. In this study, we have seen the impact of distributing two different types of green feed (purple clover VS alfalfa), in a ration composed of oat hay, silage of corn and concentrated feed, in equal quantities, on resulting milk destined for an Edam manufacturing. It reveals that alfalfa allows a high production of milk, comparatively to purple clover. However, this latter allows a high quality of milk, in point of view physico-chemical properties, especially regarding proteins and fat yields, two essential factors affecting Edam quality. The obtained results indicated that milk allowed by purple clover shows a best physico-chemical quality beside alfalfa, for it use in Edam manufacturing according to the values recommended by standardized dairies.

Keywords: dairy cows, Edam, food, quality

Procedia PDF Downloads 321
28271 Bag of Words Representation Based on Weighting Useful Visual Words

Authors: Fatma Abdedayem

Abstract:

The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.

Keywords: BOW, useful visual words, weighted visual words, bag of visual words

Procedia PDF Downloads 436
28270 Exploring the Relationship between Employer Brand and Organizational Attractiveness: The Mediating Role of Employer Image and the Moderating Role of Value Congruence

Authors: Yi Shan Wu, Ting Hsuan Wu, Li Wei Cheng, Pei Yu Guo

Abstract:

Given the fiercely competitive environment, human capital is one of the most valuable assets in a commercial enterprise. Therefore, developing strategies to acquire more talents is crucial. Talents are mainly attracted by both internal and external employer brands as well as by the messages conveyed from the employer image. This not only manifests the importance of a brand and an image of an organization but shows people might be affected by their personal values when assessing an organization as an employer. The goal of the present study is to examine the association between employer brand, employer image, and the likelihood of increasing organizational attractiveness. In addition, we draw from social identity theory to propose value congruence may affect the relationship between employer brand and employer image. Data was collected from those people who only worked less than a year in the industry via an online survey (N=209). The results show that employer image partly mediates the effect of employer brand on organizational attractiveness. In addition, the results also suggest that value congruence does not moderate the relationship between employer brand and employer image. These findings explain why building a good employer brand could enhance organization attractiveness and indicate there should be other factors that may affect employer image building, offering directions for future research.

Keywords: organizational attractiveness, employer brand, employer image, value congruence

Procedia PDF Downloads 135
28269 RoboWeedSupport-Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/H

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Mads Dyrmann, Robert Poulsen

Abstract:

For the past three years, the Danish project, RoboWeedSupport, has sought to bridge the gap between the potential herbicide savings using a decision support system and the required weed inspections. In order to automate the weed inspections it is desired to generate a map of the weed species present within the field, to generate the map images must be captured with samples covering the field. This paper investigates the economical cost of performing this data collection based on a camera system mounted on a all-terain vehicle (ATV) able to drive and collect data at up to 50 km/h while still maintaining a image quality sufficient for identifying newly emerged grass weeds. The economical estimates are based on approximately 100 hectares recorded at three different locations in Denmark. With an average image density of 99 images per hectare the ATV had an capacity of 28 ha per hour, which is estimated to cost 6.6 EUR/ha. Alternatively relying on a boom solution for an existing tracktor it was estimated that a cost of 2.4 EUR/ha is obtainable under equal conditions.

Keywords: weed mapping, integrated weed management, weed recognition, image acquisition

Procedia PDF Downloads 233
28268 The Influence of Destination Image on Tourists' Experience at Osun Osogbo World Heritage Site

Authors: Bola Adeleke, Kayode Ogunsusi

Abstract:

Heritage sites have evolved to preserve culture and heritage and also to educate and entertain tourists. Tourist travel decisions and behavior are influenced by destination image and value of the experience of tourists. Perceived value is one of the important tools for securing a competitive edge in tourism destinations. The model of Ritchie and Crouch distinguished 36 attributes of competitiveness which are classified into five factors which are quality of experience, touristic attractiveness, environment and infrastructure, entertainment/outdoor activities and cultural traditions. The study extended this model with a different grouping of the determinants of destination competitiveness. The theoretical framework used for this study assumes that apart from attractions already situated in the grove, satisfaction with destination common service, and entertainment and events, can all be used in creating a positive image for/and in attracting customers (destination selection) to visit Osun Sacred Osogbo Grove during and after annual celebrations. All these will impact positively on travel experience of customers as well as their spiritual fulfillment. Destination image has a direct impact on tourists’ satisfaction which consequently impacts on tourists’ likely future behavior on whether to revisit a cultural destination or not. The study investigated the variables responsible for destination image competitiveness of the Heritage Site; assessed the factors enhancing the destination image; and evaluated the perceived value realized by tourists from their cultural experience at the grove. A complete enumeration of tourists above 18 years of age who visited the Heritage Site within the month of March and April 2017 was taken. 240 respondents, therefore, were used for the study. The structured questionnaire with 5 Likert scales was administered. Five factors comprising 63 variables were used to determine the destination image competitiveness through principal component analysis, while multiple regressions were used to evaluate perceived value of tourists at the grove. Results revealed that 11 out of the 12 variables determining the destination image competitiveness were significant in attracting tourists to the grove. From the R-value, all factors predicted tourists’ value of experience strongly (R= 0.936). The percentage variance of customer value was explained by 87.70% of the variance of destination common service, entertainment and event satisfaction, travel environment satisfaction and spiritual satisfaction, with F-value being significant at 0.00. Factors with high alpha value contributed greatly to adding value to enhancing destination and tourists’ experience. 11 variables positively predicted tourist value with significance. Managers of Osun World Heritage Site should improve on variables critical to adding values to tourists’ experience.

Keywords: competitiveness, destination image, Osun Osogbo world heritage site, tourists

Procedia PDF Downloads 186
28267 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 80
28266 The 'Human Medium' in Communicating the National Image: A Case Study of Chinese Middle-Class Tourists Visiting Japan

Authors: Abigail Qian Zhou

Abstract:

In recent years, the prosperity of mass tourism in China has accelerated the breadth and depth of direct communication between countries, and the national image has been placed in a new communication context. Outbound tourists are not only directly involved in the formation of the national image, but are also the most direct medium and the most active symbol representing the national image. This study uses Chinese middle-class tourists visiting Japan as a case study, and analyzes, through participant observation and semi-structured interviews, the communication function of the national image transmitted by 'human medium' in tourism activities. It also explores the 'human medium' in the era of mass tourism. This study hopes to build a bridge for tourism research and national image and media studies. It will provide a theoretical basis and practical guidance for promoting the national image, strengthening exchanges between tourists and local populations, and expanding the tourism market in the future.

Keywords: human medium, national image, communication, Chinese middle class, outbound tourists

Procedia PDF Downloads 127
28265 Impact of Massive Weight Loss Body Contouring Surgery in the Patient’s Quality of Life

Authors: Maria Albuquerque, Miguel Matias, Ângelo Sá, Juliana Sousa, Maria Manuel Mouzinho

Abstract:

Obesity is a frequent disease in Portugal. The surgical treatment is very effective and has an indication when there is a failure of the medical treatment. Although massive weight loss is associated with considerable health gains, these patients are characterized by a variable degree of dermolipodistrophy. In some cases, there is even the development of physical symptoms such as intertriginous, and some degree of psychological distress is present. In almost all cases, a desire for a better body contour, which inhibits some aspects of social life, is a fact. A prospective study was made to access the impact of body contouring surgery in the quality of life of patients who underwent a massive weight lost correction surgical procedure at Centro Hospitalar de Lisboa Central between January 2020 and December 2021. The patients were submitted to the Body Q subjective questionnaire adapted for the Portuguese language and accessed for the following categories: Anguish with Appearance, Contempt with Body Image, Satisfaction with the Abdomen, and Overall Satisfaction with the Body. The questionnaire was repeated at the 6 months mark. A total of 80 patients were sampled. The sex distribution was 79 female and 1 male. The median BMI index before surgery was inferior to 28%. The pre operatory questionnaire showed high scores for Anguish with Appearance and low scores for the body image self-evaluation. Overall, there was an improvement of at least 50% in all the evaluated scores. Additionally, a correlation was found between abdominoplasty and the contempt with body image and satisfaction with the abdomen (p-value <0.05). Massive weight loss is associated with important body deformities that have a significant impact on the patient’s personal and social life. Body contouring surgery is then vital for these patients as it implicates major aesthetic and functional benefits.

Keywords: abdominoplasty, cruroplasty, obesity, massive weight loss

Procedia PDF Downloads 157
28264 Measuring Housing Quality Using Geographic Information System (GIS)

Authors: Silvija ŠIljeg, Ante ŠIljeg, Ivan Marić

Abstract:

Measuring housing quality is being done on objective and subjective level using different indicators. During the research 5 urban and housing indicators formed according to 58 variables from different housing, domains were used. The aims of the research were to measure housing quality based on GIS approach and to detect critical points of housing in the example of Croatian coastal Town Zadar. The purposes of GIS in the research are to generate models of housing quality indexes by standardisation and aggregation of variables and to examine accuracy model of housing quality index. Analysis of accuracy has been done on the example of variable referring to educational objects availability. By defining weighted coefficients and using different GIS methods high, middle and low housing quality zones were determined. Obtained results can be of use to town planners, spatial planners and town authorities in the process of generating decisions, guidelines, and spatial interventions.

Keywords: housing quality, GIS, housing quality index, indicators, models of housing quality

Procedia PDF Downloads 298