Search results for: hand movement recognition
6646 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs
Authors: Mina Youssef Makram Ibrahim
Abstract:
Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition
Procedia PDF Downloads 646645 Evaluate the Changes in Stress Level Using Facial Thermal Imaging
Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian
Abstract:
This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.Keywords: stress, thermal imaging, face, SVM, polygraph
Procedia PDF Downloads 4876644 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis
Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha
Abstract:
Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier
Procedia PDF Downloads 4676643 Even When the Passive Resistance Is Obligatory: Civil Intellectuals’ Solidarity Activism in Tea Workers Movement
Authors: Moshreka Aditi Huq
Abstract:
This study shows how a progressive portion of civil intellectuals in Bangladesh contributed as the solidarity activist entities in a movement of tea workers that became the symbol of their unique moral struggle. Their passive yet sharp way of resistance, with the integration of mass tea workers of a tea estate, got demonstrated against certain private companies and government officials who approached to establish a special economic zone inside the tea garden without offering any compensation and rehabilitation for poor tea workers. Due to massive protests and rebellion, the authorized entrepreneurs had to step back and called off the project immediately. The extraordinary features of this movement generated itself from the deep core social need of indigenous tea workers who are still imprisoned in the colonial cage. Following an anthropological and ethnographic perspective, this study adopted the main three techniques of intensive interview, focus group discussion, and laborious observation, to extract empirical data. The intensive interviews were undertaken informally using a mostly conversational approach. Focus group discussions were piloted among various representative groups where observations prevailed as part of the regular documentation process. These were conducted among civil intellectual entities, tea workers, tea estate authorities, civil service authorities, and business officials to obtain a holistic view of the situation. The fieldwork was executed in capital Dhaka city, along with northern areas like Chandpur-Begumkhan Tea Estate of Chunarughat Upazilla and Habiganj city of Habiganj District of Bangladesh. Correspondingly, secondary data were accessed through books, scholarly papers, archives, newspapers, reports, leaflets, posters, writing blog, and electronic pages of social media. The study results find that: (1) civil intellectuals opposed state-sponsored business impositions by producing counter-discourse and struggled against state hegemony through the phases of the movement; (2) instead of having the active physical resistance, civil intellectuals’ strength was preferably in passive form which was portrayed through their intellectual labor; (3) the combined movement of tea workers and civil intellectuals reflected on social security of ethnic worker communities that contrasts state’s pseudo-development motives which ultimately supports offensive and oppressive neoliberal growths of economy; (4) civil intellectuals are revealed as having certain functional limitations in the process of movement organization as well as resource mobilization; (5) in specific contexts, the genuine need of protest by indigenous subaltern can overshadow intellectual elitism and helps to raise the voices of ‘subjugated knowledge’. This study is quite likely to represent two sets of apparent protagonist entities in the discussion of social injustice and oppressive development intervention. On the one, hand it may help us to find the basic functional characteristics of civil intellectuals in Bangladesh when they are in a passive mode of resistance in social movement issues. On the other hand, it represents the community ownership and inherent protest tendencies of indigenous workers when they feel threatened and insecure. The study seems to have the potential to understand the conditions of ‘subjugated knowledge’ of subalterns. Furthermore, being the memory and narratives, these ‘activism mechanisms’ of social entities broadens the path to understand ‘power’ and ‘resistance’ in more fascinating ways.Keywords: civil intellectuals, resistance, subjugated knowledge, indigenous
Procedia PDF Downloads 1276642 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation
Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad
Abstract:
For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control
Procedia PDF Downloads 4806641 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1536640 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance
Authors: Hirokatsu Kawashima
Abstract:
One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).Keywords: auditory error recognition, intensive listening, interaction, investigation
Procedia PDF Downloads 5146639 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1186638 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3356637 Effectiveness of Physiotherapy in Hand Dysfunction of Leukemia Patients with Chronic Musculoskeletal Graft versus Host Disease Post Bone Marrow Transplant
Authors: Mohua Chatterjee, Rajib De
Abstract:
Introduction: Bone Marrow Transplant (BMT) is often performed to treat patients with various types of leukemia. A majority of these patients develop complications like chronic musculoskeletal GVHD post-BMT where patients get scleroderma, pain and restricted range of motion of joints of hand. If not treated early, it may cause permanent deformity of hand. This study was done to find the effectiveness of physiotherapy in hand dysfunction caused due to chronic musculoskeletal GVHD of leukemia patients after BMT. Methodology: 23 patients diagnosed with leukemia and having musculoskeletal GVHD were treated with a set of exercises including active exercises and stretching. The outcome was measured by Cochin Hand Function Scale (CHFS) at baseline and after four weeks of intervention. Results: Two patients were not able to carry out exercises beyond two weeks due to relapse of disease and one patient defaulted. It was found that all the patients who received physiotherapy had significant improvement in hand function. Mean CHFS decreased from 63.67 to 27.43 (P value < 0.001) indicating improvement in hand function after four weeks of physiotherapy. Conclusion: Early intervention of physiotherapy is effective in reducing hand dysfunction of leukemia patients with musculoskeletal GVHD post-BMT.Keywords: bone marrow transplant, hand dysfunction, leukemia, musculoskeletal graft versus host disease, physiotherapy
Procedia PDF Downloads 2416636 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach
Authors: Aliaksandr Huminski
Abstract:
Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.Keywords: decomposition, labeling, primitive verbs, semantic roles
Procedia PDF Downloads 3676635 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 1476634 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1726633 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 3236632 Identification of Knee Dynamic Profiles in High Performance Athletes with the Use of Motion Tracking
Authors: G. Espriú-Pérez, F. A. Vargas-Oviedo, I. Zenteno-Aguirrezábal, M. D. Moya-Bencomo
Abstract:
One of the injuries with a higher incidence among university-level athletes in the North of Mexico is presented in the knee. This injury generates absenteeism in training and competitions for at least 8 weeks. There is no active quantitative methodology, or protocol, that directly contributes to the clinical evaluation performed by the medical personnel at the prevalence of knee injuries. The main objective is to contribute with a quantitative tool that allows further development of preventive and corrective measures to these injuries. The study analyzed 55 athletes for 6 weeks, belonging to the disciplines of basketball, volleyball, soccer and swimming. Using a motion capture system (Nexus®, Vicon®), a three-dimensional analysis was developed that allows the measurement of the range of movement of the joint. To focus on the performance of the lower limb, eleven different movements were chosen from the Functional Performance Test, Functional Movement Screen, and the Cincinnati Jump Test. The research identifies the profile of the natural movement of a healthy knee, with the use of medical guidance, and its differences between each sport. The data recovered by the single-leg crossover hop managed to differentiate the type of knee movement among athletes. A maximum difference of 60° of offset was found in the adduction movement between male and female athletes of the same discipline. The research also seeks to serve as a guideline for the implementation of protocols that help identify the recovery level of such injuries.Keywords: Cincinnati jump test, functional movement screen, functional performance test, knee, motion capture system
Procedia PDF Downloads 1266631 An Analytic Comparison between Arabic and English Prosodies: Poetical Feet and Meters
Authors: Jamil Jafari, Sharafat Karimi
Abstract:
The Arabic Language has a complicated system of prosody invented by the great grammarian Khalil Ibn Ahmad Farahidi. He could extract 15 meters out of his innovative five circles, which were used in Arabic poetry of the 7th and 8th centuries. Then after a while, his student Akhfash added or compensated another meter to his tutor's meters, so overall, we now have 16 different meters in Arabic poetry. These meters have been formed by various combinations of 8 different feet and each foot is combined of rudimentary units called Sabab and Wated which are combinations of movement (/) and silent (ʘ) letters. On the other hand in English, we are dealing with another system of metrical prosody. In this language, feet are consisted of stressed and unstressed syllables and are of six types: iamb, trochee, dactyl, anapest, spondee, and pyrrhic. Using the descriptive-analytic method, in this research we aim at making a comparison between Arabic and English systems of metrical prosody to investigate their similarities and differences. The results show that both of them are quantitative and both of them rely on syllables in afoot. But unlike Arabic, English is utilizing another rhyme system and the number of feet in a line differs from Arabic; also, its feet are combined of stressed and unstressed syllables, while those of Arabic is a combination of movement and silent letters.Keywords: Arabic prosody, English prosody, foot, meter, poetry
Procedia PDF Downloads 1476630 Support for and Participation in 'Spontaneous' Mass Protest in Iceland: The Moderating Effects of Biographical Availability, Critical Mass, and Social Embeddedness
Authors: Jon Gunnar Bernburg
Abstract:
The present study addresses a topic that is fundamental to social movement theory, namely, the contingent link between movement support and movement participation. Usually, only a small fraction of those who agree with the cause of a social movement is mobilized into participating in it (a pattern sometimes referred to as 'the collective action problem'). However, historical moments sometimes emerge when many supporters become mobilized to participate in the movement, greatly enhancing the chance of movement success. By studying a case in point, this paper addresses the limited work on how support and participation are related at such critical moments. Specifically, the paper examines the association between supporting and participating in a huge 'pro-democracy' protest in Iceland in April 2016, in the wake of the global Panama Papers scandal. Organized via social media by only a handful of activists, but supported by a majority of Icelanders, the protest attracted about a fourth of the urban population, leading to a snap election and government change. Surveying Iceland’s urban population, this paper tests hypotheses about the processes mobilizing supporters to participate in the protest. The findings reveal how variables derived from the theories of biographical availability (males vs. females, working class vs. professionals), critical mass (expectations, prior protest success), and social embeddedness (close ties with protesters) moderate the association between protest support and participation. The study helps to account for one of the largest protests in Iceland’s history while contributing to the theory about how historical contexts shape the behavior of movement supporters.Keywords: Iceland, crisis, protest support vs. participation, theories of mass mobilization
Procedia PDF Downloads 2386629 A Reflection of the Contemporary Life of Urban People Through Mixed Media Art
Authors: Van Huong Mai, Kanokwan Nithiratphat, Adool Booncham
Abstract:
The Movement of Contemporary Life consisted of two purposes, which were to study the movement and development of the modern life and to create the visual arts, which were paintings expressed via the form of apartment buildings was used from mixed media (digital printing and acrylic painting on canvas) which conveyed the rapid pace of modern life leading to diverse movements in viewer’s feeling. The operation of this creation was collected field data, documentary data, and influence from creative work. The data analysis was analyzed in order to theme, form, technique, and process to satisfy of concept and special character of the pieces.Keywords: movement, contemporary life, visual art, acrylic painting, digital art, urban space
Procedia PDF Downloads 996628 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2676627 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 4186626 Metoo in China: An Analysis of the Metoo Movement in China's Social Media
Authors: Xinrui Zhao
Abstract:
Connective actions acquired a completely different outlook of a social movement which credited with the rapid developed of social media technologies. New social movements amalgamate and mobilize around hashtags, memes, and personalized action frames. In 2017, the #MeToo movements from America spread to a variety of countries as a hashtag on social media. It attempted to demonstrate the widespread prevalence of sexual assault and harassment movement. It also encouraged Chinese women to participate by devoting and contributing their voices and acts. Furthermore, China’s #MeToo movement shows certain characteristics which are strongly shaped by particular political and cultural backgrounds, that also need to be studied. This paper serves as supplementary materials of connective action studies by addressing the #MeToo movement issues in China, which is rarely mentioned previously in the literature, it also supports a view that suggests that ideological and cultural drivers both strategically contribute to personalized action frames. This paper combines textual analysis methods, collecting attached materials from search engines in China’s social media, portrays the structure of China’s #MeToo movements by showing prominent activists, scholars, organization and the public’s action frame in China’s social media(Weibo, wechat, zhihu, douban). In doing so, it seeks to find how China’s #MeToo movements are organized and reveal diversities of social action approaches among those three subjects, digs out the correlations of their actions related to different social media platforms. This analysis suggests that while facing the government's censorship and moral judgments from the public, China’s #MeToo movement combines with few influential sexual assault and harassment events and is lead by the prominent activists who also are the victims in the events. The debates and critiques among Chinese scholars concerned the outcomes and significance of China’s #MeToo movement are divided into sides. Organizations still show less power in participating China’s movement social media. Public’s participation is varied of platforms which hugely affected by their personal experiences and knowledge.Keywords: connective action, China, MeToo movement, social media
Procedia PDF Downloads 1306625 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion
Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro
Abstract:
The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design
Procedia PDF Downloads 3056624 Speech Recognition Performance by Adults: A Proposal for a Battery for Marathi
Authors: S. B. Rathna Kumar, Pranjali A Ujwane, Panchanan Mohanty
Abstract:
The present study aimed to develop a battery for assessing speech recognition performance by adults in Marathi. A total of four word lists were developed by considering word frequency, word familiarity, words in common use, and phonemic balance. Each word list consists of 25 words (15 monosyllabic words in CVC structure and 10 monosyllabic words in CVCV structure). Equivalence analysis and performance-intensity function testing was carried using the four word lists on a total of 150 native speakers of Marathi belonging to different regions of Maharashtra (Vidarbha, Marathwada, Khandesh and Northern Maharashtra, Pune, and Konkan). The subjects were further equally divided into five groups based on above mentioned regions. It was found that there was no significant difference (p > 0.05) in the speech recognition performance between groups for each word list and between word lists for each group. Hence, the four word lists developed were equally difficult for all the groups and can be used interchangeably. The performance-intensity (PI) function curve showed semi-linear function, and the groups’ mean slope of the linear portions of the curve indicated an average linear slope of 4.64%, 4.73%, 4.68%, and 4.85% increase in word recognition score per dB for list 1, list 2, list 3 and list 4 respectively. Although, there is no data available on speech recognition tests for adults in Marathi, most of the findings of the study are in line with the findings of research reports on other languages. The four word lists, thus developed, were found to have sufficient reliability and validity in assessing speech recognition performance by adults in Marathi.Keywords: speech recognition performance, phonemic balance, equivalence analysis, performance-intensity function testing, reliability, validity
Procedia PDF Downloads 3586623 The Influence of Ice Topography on Sliding over Ice
Authors: Ernests Jansons, Karlis Agris Gross
Abstract:
Winter brings snow and ice in the Northern Europe and with it the need to move safely over ice. It has been customary to select an appropriate material surface for movement over ice, but another way to influence the interaction with ice is to modify the ice surface. The objective of this work was to investigate the influence of ice topography on initiating movement over ice and on sliding velocity over ice in the laboratory and real-life conditions. The ice was prepared smooth, scratched or with solidified ice-droplets to represent the surface of ice after ice rain. In the laboratory, the coefficient of friction and the sliding velocity were measured, but the sliding velocity measured at the skeleton push-start facility. The scratched ice surface increased the resistance to movement and also showed the slowest sliding speed. Sliding was easier on the smooth ice and ice covered with frozen droplets. The contact surface was measured to determine the effect of contact area with sliding. Results from laboratory tests will be compared to loading under heavier loads to show the influence of load on sliding over different ice surfaces. This outcome provides a useful indicator for pedestrians and road traffic on the safety of movement over different ice surfaces as well as a reference for those involved with winter sports.Keywords: contact area, friction, ice topography, sliding velocity
Procedia PDF Downloads 2416622 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1636621 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 4166620 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim Fares Zaidi
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: ARSDS, HTK, HMM, MFCC, PLP
Procedia PDF Downloads 1106619 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 3436618 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 1146617 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 180