Search results for: geothermal energy production forecasting
14607 Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia
Authors: Djordjevic J. Sladjana, Djordjevic-Milošević B. Suzana, Milošević M. Slobodan
Abstract:
The potential of biomass as a renewable energy source leads Serbia to be the top of European countries by the amount of available but unused biomass. Technologies for its use are available and ecologically acceptable. Moreover, they are not expensive high-tech solutions even for the poor investment environment of Serbia, while other options seem to be less achievable. From the other point of view, Serbia has a huge percentage of unused agriculture land. Agricultural production in Serbia languishes: a large share of agricultural land therefore remains untreated, and there is a significant proportion of degraded land. From all the above, biomass intended for energy production is becoming an increasingly important factor in the stabilization of agricultural activities. Orientation towards the growing bioenergy crops versus conventional crop cultivation becomes an interesting option. The aim of this paper is to point out the possibility of growing energy crops in accordance with the conditions and cultural practice in rural areas of Serbia. First of all, the cultivation of energy crops on lower quality land is being discussed, in order to revitalize the rural areas of crops through their inclusion into potential energy sector. Next is the theme of throwing more light on the increase in the area under this competitive agricultural production to correct land use in terms of climate change in Serbia. The goal of this paper is to point out the contribution of the share of biomass in energy production and consumption, and the effect of reducing the negative environmental impact.Keywords: agro-energy crops, conditions for plantation, revitalization of rural areas, degraded and unused soils
Procedia PDF Downloads 26314606 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives
Authors: Fahim Ullah, Muhammad Usman
Abstract:
Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis
Procedia PDF Downloads 6414605 Performance Analysis of Photovoltaic Solar Energy Systems
Authors: Zakariyya Hassan Abdullahi, Zainab Suleiman Abdullahi, Nuhu Alhaji Muhammad
Abstract:
In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented.Keywords: photovoltaic, renewable, performance, efficiency, energy
Procedia PDF Downloads 51514604 Economic Forecasting Analysis for Solar Photovoltaic Application
Authors: Enas R. Shouman
Abstract:
Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.Keywords: photovoltaic, financial methods, solar energy, economics, PV panel
Procedia PDF Downloads 10914603 The Problems of Current Earth Coordinate System for Earthquake Forecasting Using Single Layer Hierarchical Graph Neuron
Authors: Benny Benyamin Nasution, Rahmat Widia Sembiring, Abdul Rahman Dalimunthe, Nursiah Mustari, Nisfan Bahri, Berta br Ginting, Riadil Akhir Lubis, Rita Tavip Megawati, Indri Dithisari
Abstract:
The earth coordinate system is an important part of an attempt for earthquake forecasting, such as the one using Single Layer Hierarchical Graph Neuron (SLHGN). However, there are a number of problems that need to be worked out before the coordinate system can be utilized for the forecaster. One example of those is that SLHGN requires that the focused area of an earthquake must be constructed in a grid-like form. In fact, within the current earth coordinate system, the same longitude-difference would produce different distances. This can be observed at the distance on the Equator compared to distance at both poles. To deal with such a problem, a coordinate system has been developed, so that it can be used to support the ongoing earthquake forecasting using SLHGN. Two important issues have been developed in this system: 1) each location is not represented through two-value (longitude and latitude), but only a single value, 2) the conversion of the earth coordinate system to the x-y cartesian system requires no angular formulas, which is therefore fast. The accuracy and the performance have not been measured yet, since earthquake data is difficult to obtain. However, the characteristics of the SLHGN results show a very promising answer.Keywords: hierarchical graph neuron, multidimensional hierarchical graph neuron, single layer hierarchical graph neuron, natural disaster forecasting, earthquake forecasting, earth coordinate system
Procedia PDF Downloads 21614602 Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study
Authors: Flavio Cordeiro Fontanella, Asla Medeiros e Sá, Moacyr Alvim Horta Barbosa da Silva
Abstract:
In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject.Keywords: accuracy evaluation, Brazilian championship, football results forecasts, forecasting models, visual analysis
Procedia PDF Downloads 9514601 Fracking the UK's Shale Gas Regulatory Regime
Authors: Yanal Abul Failat
Abstract:
The production of oil and natural gas from shale formations is becoming a trend, and many countries with technically and economically recoverable unconventional resources are endeavoring to explore how shale formations may benefit the economy and achieve energy security. The trajectory of shale gas development in the UK is highly supported by the government; in the Gas Generation Strategy Paper published by the UK government on 5 December 2013, it is recognized that the shale gas production would decrease reliance on imports and thus enhance the UK’s energy security. Moreover, the UK Institute of Directors report on UK Shale Gas Potential explains that in the UK there is a potential of production peaking at around 1.13 trillion cubic feet (“tcf”) and a sector that could support around 70,000 jobs and secure net benefit to the Treasury in tax revenues. On this basis, there has been a growing interest in the benefits of exploring the UK’s shale gas but a combination of technical challenges faced in shale gas operations, a stern opposition by environmentalists and concerns on the adequacy of the legal framework have slowed the progress of the emerging UK shale industry.Keywords: shale gas, UK, legal, oil and gas, energy
Procedia PDF Downloads 71114600 Performance of Environmental Efficiency of Energy Consumption in OPEC Countries
Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar
Abstract:
Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time.Keywords: energy efficiency, environmental, OPEC, data envelopment analysis
Procedia PDF Downloads 38714599 Renewable Energy from Local Waste for Producing of Processed Agricultural Products
Authors: Ruedee Niyomrath, Somboon Sarasit, Chaisri Tharaswatpipat
Abstract:
This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products.Keywords: waste, renewable energy, producing of product, processed agricultural products
Procedia PDF Downloads 44014598 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province
Authors: N. Sopipan
Abstract:
In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.Keywords: ARIMA Models, exponential smoothing, Holt-Winter model
Procedia PDF Downloads 30014597 Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC
Authors: Aref Yazdani, Ali Tofighi
Abstract:
We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time.Keywords: micro black holes, LHC experiment, black holes thermodynamics, extra dimensions model
Procedia PDF Downloads 14414596 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 18814595 Spatial Spillovers in Forecasting Market Diffusion of Electric Mobility
Authors: Reinhold Kosfeld, Andreas Gohs
Abstract:
In the reduction of CO₂ emissions, the transition to environmentally friendly transport modes has a high significance. In Germany, the climate protection programme 2030 includes various measures for promoting electromobility. Although electric cars at present hold a market share of just over one percent, its stock more than doubled in the past two years. Special measures like tax incentives and a buyer’s premium have been put in place to promote the shift towards electric cars and boost their diffusion. Knowledge of the future expansion of electric cars is required for planning purposes and adaptation measures. With a view of these objectives, we particularly investigate the effect of spatial spillovers on forecasting performance. For this purpose, time series econometrics and panel econometric models are designed for pure electric cars and hybrid cars for Germany. Regional forecasting models with spatial interactions are consistently estimated by using spatial econometric techniques. Regional data on the stocks of electric cars and their determinants at the district level (NUTS 3 regions) are available from the Federal Motor Transport Authority (Kraftfahrt-Bundesamt) for the period 2017 - 2019. A comparative examination of aggregated regional and national predictions provides quantitative information on accuracy gains by allowing for spatial spillovers in forecasting electric mobility.Keywords: electric mobility, forecasting market diffusion, regional panel data model, spatial interaction
Procedia PDF Downloads 17514594 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models
Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu
Abstract:
This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making
Procedia PDF Downloads 4814593 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating
Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei
Abstract:
The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands
Procedia PDF Downloads 6414592 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco
Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy
Abstract:
The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.Keywords: energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit
Procedia PDF Downloads 69514591 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem
Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis
Abstract:
In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak
Procedia PDF Downloads 34414590 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production
Authors: Jason West
Abstract:
Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems
Procedia PDF Downloads 7714589 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 43514588 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach
Abstract:
We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons
Procedia PDF Downloads 43514587 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 22914586 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction
Authors: Jitka Hroudova, Jiri Zach
Abstract:
The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction
Procedia PDF Downloads 33414585 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France
Authors: Sofiane Bourchak, Sébastien Bridier
Abstract:
The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation
Procedia PDF Downloads 43614584 Water Productivity as an Indicator of Bioenergetic Sustainability in Sugarcane
Authors: Rubens Duarte Coelho, Timóteo Herculino da Silva Barros, Jefferson de Olveira Costa
Abstract:
Brazil has an electrical matrix of predominantly renewable origin, with emphasis on water sources, which account for 65.2%, biomass energy for 8.2%, wind for 6.8% and solar for 0.13% of the domestic supply. Among these sources, sugarcane cultivation stands out, aiming both at the production of bioethanol and biomass to supply “clean energy”. However, like all other crops, sugar cane demands a large volume of a natural resource that is increasingly “scarce” in quantity and quality: water. Adequate and strategic water management throughout the entire sugarcane cycle is of fundamental importance, and water productivity can be used to adjust irrigation planning and decision-making, increasing the productivity of stalks, bioethanol, biomass, and sugar. In this way, water productivity is a good indicator for analysis and decision-making considering the sustainability of cultivation, as it allows evaluation of the variation in the ratio between production and the amount of water used, suggesting values that maximize the use of this natural resource. In this context, studies that relate water demand, in this case, expressed by water productivity, with the energy production of this crop, in this case, expressed by the production of bioethanol, biomass and sugar, are fundamental to obtaining an efficient production of renewable energy, which aims at the rational use of natural resources, especially water. The objective of the present work was to evaluate the response of sugarcane varieties subjected to different water availability to obtain better sustainability in bioenergy production, presenting water productivity indices for Bioethanol, Sugar and Biomass. The variety that responded best was RB966928, with a bioethanol yield of 68.7 L Mg-1. Future research should focus on the water response under each of the sugarcane fractions in terms of their elemental composition so that the influence of water on the energy supply of this crop can be better understood.Keywords: energy matrix, water use, water use efficiency, sustainability
Procedia PDF Downloads 7514583 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data
Authors: Mohamed Amhal, Jose Sayritupac
Abstract:
Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems
Procedia PDF Downloads 17614582 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 43414581 Dynamics Behavior of DFIG Wind Energy Conversion System Incase Dip Voltage
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today’s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.Keywords: doubly fed induction generator (DFIG), wind energy, grid fault, electrical engineering
Procedia PDF Downloads 47014580 Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas
Authors: U. Schmidt, D. Dannehl, I. Schuch, J. Suhl, T. Rocksch, R. Salazar-Moreno, E. Fitz-Rodrigues, A. Rojano Aquilar, I. Lopez Cruz, G. Navas Gomez, R. A. Abraham, L. C. Irineo, N. G. Gilberto
Abstract:
The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.Keywords: semi closed, greenhouses, urban farming, solar heat collector, closed water cycles, aquaponics
Procedia PDF Downloads 33214579 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 33714578 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation
Authors: Sneha Thakur, Sanjeev Karmakar
Abstract:
This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level
Procedia PDF Downloads 78