Search results for: electrical distribution systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15056

Search results for: electrical distribution systems

14816 Developing a Regulator for Improving the Operation Modes of the Electrical Drive Motor

Authors: Baghdasaryan Marinka

Abstract:

The operation modes of the synchronous motors used in the production processes are greatly conditioned by the accidentally changing technological and power indices.  As a result, the electrical drive synchronous motor may appear in irregular operation regimes. Although there are numerous works devoted to the development of the regulator for the synchronous motor operation modes, their application for the motors working in the irregular modes is not expedient. In this work, to estimate the issues concerning the stability of the synchronous electrical drive system, the transfer functions of the electrical drive synchronous motors operating in the synchronous and induction modes have been obtained.  For that purpose, a model for investigating the frequency characteristics has been developed in the LabView environment. Frequency characteristics for assessing the transient process of the electrical drive system, operating in the synchronous and induction modes have been obtained, and based on their assessment, a regulator for improving the operation modes of the motor has been proposed. The proposed regulator can be successfully used to prevent the irregular modes of the electrical drive synchronous motor, as well as to estimate the operation state of the drive motor of the mechanism with a changing load.

Keywords: electrical drive system, synchronous motor, regulator, stability, transition process

Procedia PDF Downloads 150
14815 Influence of Processing Parameters on the Reliability of Sieving as a Particle Size Distribution Measurements

Authors: Eseldin Keleb

Abstract:

In the pharmaceutical industry particle size distribution is an important parameter for the characterization of pharmaceutical powders. The powder flowability, reactivity and compatibility, which have a decisive impact on the final product, are determined by particle size and size distribution. Therefore, the aim of this study was to evaluate the influence of processing parameters on the particle size distribution measurements. Different Size fractions of α-lactose monohydrate and 5% polyvinylpyrrolidone were prepared by wet granulation and were used for the preparation of samples. The influence of sieve load (50, 100, 150, 200, 250, 300, and 350 g), processing time (5, 10, and 15 min), sample size ratios (high percentage of small and large particles), type of disturbances (vibration and shaking) and process reproducibility have been investigated. Results obtained showed that a sieve load of 50 g produce the best separation, a further increase in sample weight resulted in incomplete separation even after the extension of the processing time for 15 min. Performing sieving using vibration was rapider and more efficient than shaking. Meanwhile between day reproducibility showed that particle size distribution measurements are reproducible. However, for samples containing 70% fines or 70% large particles, which processed at optimized parameters, the incomplete separation was always observed. These results indicated that sieving reliability is highly influenced by the particle size distribution of the sample and care must be taken for samples with particle size distribution skewness.

Keywords: sieving, reliability, particle size distribution, processing parameters

Procedia PDF Downloads 606
14814 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy

Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky

Abstract:

Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .

Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline

Procedia PDF Downloads 136
14813 Examining the Relationship between Chi-Square Test Statistics and Skewness of Weibull Distribution: Simulation Study

Authors: Rafida M. Elobaid

Abstract:

Most of the literature on goodness-of-fit test try to provide a theoretical basis for studying empirical distribution functions. Such goodness-of-fit tests are Kolmogorove-Simirnov and Crumer-Von Mises Type tests. However, it is likely that most of literature has not focused in details on the relationship of the values of the test statistics and skewness or kurtosis. The aim of this study is to investigate the behavior of the values of the χ2 test statistic with the variation of the skewness of right skewed distribution. A simulation study is conducted to generate random numbers from Weibull distribution. For a fixed sample sizes, different levels of skewness are considered, and the corresponding values of the χ2 test statistic are calculated. Using different sample sizes, the results show an inverse relationship between the value of χ2 test and the level of skewness for Wiebull distribution, i.e the value of χ2 test statistic decreases as the value of skewness increases. The research results also show that with large values of skewness we are more confident that the data follows the assumed distribution. Nonparametric Kendall τ test is used to confirm these results.

Keywords: goodness-of-fit test, chi-square test, simulation, continuous right skewed distributions

Procedia PDF Downloads 415
14812 Design and Simulation of 3-Transistor Active Pixel Sensor Using MATLAB Simulink

Authors: H. Alheeh, M. Alameri, A. Al Tarabsheh

Abstract:

There has been a growing interest in CMOS-based sensors technology in cameras as they afford low-power, small-size, and cost-effective imaging systems. This article describes the CMOS image sensor pixel categories and presents the design and the simulation of the 3-Transistor (3T) Active Pixel Sensor (APS) in MATLAB/Simulink tool. The analysis investigates the conversion of the light into an electrical signal for a single pixel sensing circuit, which consists of a photodiode and three NMOS transistors. The paper also proposes three modes for the pixel operation; reset, integration, and readout modes. The simulations of the electrical signals for each of the studied modes of operation show how the output electrical signals are correlated to the input light intensities. The charging/discharging speed for the photodiodes is also investigated. The output voltage for different light intensities, including in dark case, is calculated and showed its inverse proportionality with the light intensity.

Keywords: APS, CMOS image sensor, light intensities photodiode, simulation

Procedia PDF Downloads 168
14811 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems

Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy

Abstract:

The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.

Keywords: smart grids, blockchain, fiber optic sensor, security

Procedia PDF Downloads 108
14810 Determining a Suitable Time and Temperature Combination for Electricial Conductivity Test in Sorghum

Authors: Mehmet Demir Kaya, Onur İleri, Süleyman Avcı

Abstract:

This study was conducted to determine a suitable time and temperature combination for the electrical conductivity test to be used in sorghum seeds. Fifty seeds known initial seed moisture content and weight of fresh and dead seeds (105°C for 6h) of seven sorghum cultivars were used as material. The electrical conductivities of soak water were measured using EC meter at 20, 25 and 30°C for 4, 8, 12 and 24 h using 50 mL deionized water. The experimental design was three factors factorial (7 × 3 × 4) arranged in a completely randomized design; with four replications and 50 seeds per replicate. The results showed that increased time and temperature caused a remarkable increase in EC values of all of the cultivars. Temperature significantly affected the electrical conductivity values and the best results were obtained at 25°C. The cultivars having the lowest germination percentage gave the highest electrical conductivity value. Dead seeds always gave higher electrical conductivity at 25°C for all periods. It was concluded that the temperature of 25°C and higher period than 12 h was the optimum combination for the electrical conductivity test in sorghum.

Keywords: Sorghum bicolor, seed vigor, cultivar, temperature

Procedia PDF Downloads 306
14809 Assessing Public Open Spaces Availability and Distribution in a Socially Challenged City: A Case Study of Riyadh, Saudi Arabia

Authors: Abdulwahab Alalyani, Mahbub Rashid

Abstract:

Public Open Space (POS) availability and distribution among urban communities have a central role to promotes community health. However, growing health challenges in a city would raise attention to the planning quality of these community's assets. This research aims to measure the existing availability and distribution equity of POS in the context of Saudi Arabia using Riyadh city as a case study. The methodology for the POS availability was by calculating the total POS with respect to the population total (m²/inhabitant). All POS were mapped using geographical information systems (GIS), and the total area availability of POS was compared to global, regional, and local standards. To evaluate the significant differences in POS availability across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences. The results are as follows; POS availability was lower than global standers. Riyadh has only 1.40m² per capita of POS. Spatial equity of the availability were significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of POS should be focused on increasing general POS availability and should be given priority to those low-income and unhealthy communities. Accessibility indicators of POS should be considered in future studies.

Keywords: open spaces availability, open spaces distribution, spatial equity, healthy city, Riyadh City

Procedia PDF Downloads 106
14808 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina

Abstract:

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.

Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution

Procedia PDF Downloads 282
14807 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile

Authors: Vahid Rashtchi, Ashkan Pirooz

Abstract:

This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.

Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile

Procedia PDF Downloads 596
14806 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 49
14805 MEMS based Vibration Energy Harvesting: An overview

Authors: Gaurav Prabhudesai, Shaurya Kaushal, Pulkit Dubey, B. D. Pant

Abstract:

The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones.

Keywords: energy harvesting, WSN, MEMS, piezoelectrics

Procedia PDF Downloads 495
14804 Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology

Authors: Hemendra Singh Rathod

Abstract:

Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations.

Keywords: frequency control, grid stability, li-ion battery storage, smart grid

Procedia PDF Downloads 143
14803 Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties

Authors: Jenna Metera, Olivia Graeve

Abstract:

Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation.

Keywords: evaporation, lead-free, morphology, self-assembly

Procedia PDF Downloads 118
14802 A Two Phase VNS Algorithm for the Combined Production Routing Problem

Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub

Abstract:

Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literature

Keywords: logistic, production, distribution, variable neighbourhood search

Procedia PDF Downloads 332
14801 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 380
14800 Analysis of the Unreliable M/G/1 Retrial Queue with Impatient Customers and Server Vacation

Authors: Fazia Rahmoune, Sofiane Ziani

Abstract:

Retrial queueing systems have been extensively used to stochastically model many problems arising in computer networks, telecommunication, telephone systems, among others. In this work, we consider a $M/G/1$ retrial queue with an unreliable server with random vacations and two types of primary customers, persistent and impatient. This model involves the unreliability of the server, which can be subject to physical breakdowns and takes into account the correctives maintenances for restoring the service when a failure occurs. On the other hand, we consider random vacations, which can model the preventives maintenances for improving system performances and preventing breakdowns. We give the necessary and sufficient stability condition of the system. Then, we obtain the joint probability distribution of the server state and the number of customers in orbit and derive the more useful performance measures analytically. Moreover, we also analyze the busy period of the system. Finally, we derive the stability condition and the generating function of the stationary distribution of the number of customers in the system when there is no vacations and impatient customers, and when there is no vacations, server failures and impatient customers.

Keywords: modeling, retrial queue, unreliable server, vacation, stochastic analysis

Procedia PDF Downloads 179
14799 A Unification and Relativistic Correction for Boltzmann’s Law

Authors: Lloyd G. Allred

Abstract:

The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.

Keywords: cosmology, EMP, plasma physics, relativity

Procedia PDF Downloads 215
14798 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature

Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa

Abstract:

In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.

Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state

Procedia PDF Downloads 244
14797 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network

Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong

Abstract:

This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.

Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)

Procedia PDF Downloads 475
14796 Photovoltaic Cells Characteristics Measurement Systems

Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.

Abstract:

Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.

Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition

Procedia PDF Downloads 455
14795 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration

Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong

Abstract:

This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.

Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation

Procedia PDF Downloads 182
14794 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security

Authors: Lynndee Kemmet

Abstract:

The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.

Keywords: food security, food system model, political stability, US Military

Procedia PDF Downloads 188
14793 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)

Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa

Abstract:

The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.

Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect

Procedia PDF Downloads 309
14792 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control

Procedia PDF Downloads 334
14791 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025

Authors: Alfi Al Fahreizy

Abstract:

Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.

Keywords: LEAP, energy consumption, Yogyakarta, BAU

Procedia PDF Downloads 593
14790 Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles.

Keywords: sonochemical method, nanoparticles, magnetic property, dielectric property, electrical property

Procedia PDF Downloads 344
14789 Governance Token Distributions of Layer-One.X

Authors: P. Wongthongtham, K. Coutinho, A. MacCarthy

Abstract:

Layer-One.X (L1X) blockchain provides the infrastructure layer, and decentralised applications can be created on the L1X infrastructure. L1X tokenomics are important and require a proportional balance between token distribution, nurturing user activity and engagement, and financial incentives. In this paper, we present research in progress on L1X tokenomics describing key concepts and implementations, including token velocity and value, incentive scheme, and broad distribution. Particularly the economic design of the native token of the L1X blockchain, called HeartBit (HB), is presented.

Keywords: tokenisation, layer one blockchain, interoperability, token distribution, L1X blockchain

Procedia PDF Downloads 109
14788 Three Dimensional Simulation of the Transient Modeling and Simulation of Different Gas Flows Velocity and Flow Distribution in Catalytic Converter with Porous Media

Authors: Amir Reza Radmanesh, Sina Farajzadeh Khosroshahi, Hani Sadr

Abstract:

The transient catalytic converter performance is governed by complex interactions between exhaust gas flow and the monolithic structure of the catalytic converter. Stringent emission regulations around the world necessitate the use of highly-efficient catalytic converters in vehicle exhaust systems. Computational fluid dynamics (CFD) is a powerful tool for calculating the flow field inside the catalytic converter. Radial velocity profiles, obtained by a commercial CFD code, present very good agreement with respective experimental results published in the literature. However the applicability of CFD for transient simulations is limited by the high CPU demands. In the present work, Geometric modeling ceramic monolith substrate is done with square shaped channel type of Catalytic converter and it is coated platinum and palladium. This example illustrates the effect of flow distribution on thermal response of a catalytic converter and different gas flow velocities, during the critical phase of catalytic converter warm up.

Keywords: catalytic converter, computational fluid dynamic, porous media, velocity distribution

Procedia PDF Downloads 852
14787 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 175