Search results for: commercial activated carbon
5563 Synergistic Effect of Curcumin and Insulin on GLUT4 Translocation in C2C12 Cell
Authors: Javad Mohiti-Ardekani, Shabodin Asadii, Ali Moradi
Abstract:
Introduction: Curcumin, the yellow pigment in turmeric, has been shown as an anti-diabetic agent for centuries but only in recent few years, its mechanism of action has been under investigation. Some studies showed that curcumin might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in cells. To investigate this possibility, we investigate the effects of extract and commercial curcumin with and without insulin on GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). Methods and Material: C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 40 µmolar Extract and Commercial curcumin, with or without insulin as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two independent samples t-test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM groups curcumin and curcumin with insulin in comparison to 1 % DMSO-treated myotubes control group. Results: As our results have shown extract and commercial curcumin induces GLUT4 translocation from intra-cell into cell surface. The results have also shown synergic effect of curcumin on translocation of GLUT4 from intra-cell into cell surface in the presence of 100 nm insulin. Discussion: We conclude that curcumin may be a choice of type-2 diabetes mellitus treatment because its extract and commercial enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However, it is necessary to trace the signaling pathways which are activated by curcumin.Keywords: Curcumin, insulin, Diabetes type-2, GLUT4
Procedia PDF Downloads 2435562 Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven
Authors: Uzu-Kuei Hsu, Keh-Chin Chang, Joo-Guan Hang, Chang-Hsien Tai
Abstract:
Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process.Keywords: coke oven, burning off, carbon deposits, carbon combustion, CFD
Procedia PDF Downloads 6935561 Calculate Product Carbon Footprint through the Internet of Things from Network Science
Authors: Jing Zhang
Abstract:
To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment
Procedia PDF Downloads 1165560 Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation
Authors: A. Hassiba Zemmouri, B. Nabil Mameri, C. Hakim Lounici
Abstract:
In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction.Keywords: waste activated sludge, fenton pre-treatment, biodegradability, biogas
Procedia PDF Downloads 6415559 Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality
Authors: Ilze Beitane, Evita Straumite
Abstract:
The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage. The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties-aroma, taste, consistency and appearance-of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency, and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage.Keywords: Barley flakes, malt extract, yoghurt, sensory analysis
Procedia PDF Downloads 3005558 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite
Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman
Abstract:
Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.Keywords: electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation
Procedia PDF Downloads 2255557 A Study of Carbon Emissions during Building Construction
Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli
Abstract:
In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.Keywords: building construction phase, carbon emissions assessment, building life cycle
Procedia PDF Downloads 7515556 Insight on Passive Design for Energy Efficiency in Commercial Building for Hot and Humid Climate
Authors: Aravind J.
Abstract:
Passive design can be referred to a way of designing buildings that takes advantage of the prevailing climate and natural energy resources. Which will be a key to reduce the increasing energy usage in commercial buildings. Most of the small scale commercial buildings made are merely a thermal mass inbuilt with active systems to bring lively conditions. By bringing the passive design strategies for energy efficiency in commercial buildings will reduce the usage of active systems. Thus the energy usage can be controlled through analysis of daylighting and improved living conditions in the indoor spaces by using passive techniques. And comparative study on different passive design systems and conventional methods will be approached for commercial buildings in hot and humid region. Possible effects of existing risks implied with solution for those problems is also a part of the paper. The result will be carried on with the design programme to prove the workability of the strategies.Keywords: passive design, energy efficiency, commercial buildings, hot and humid climate
Procedia PDF Downloads 3685555 Effect of Acid Activation of Vermiculite on Its Carbon Dioxide Adsorption Behaviors
Authors: Katarzyna Wal, Wojciech Stawiński, Piotr Rutkowski
Abstract:
The scientific community is paying more and more attention to the problem of air pollution. Carbon dioxide is classified as one of the most harmful gases. Its emissions are generated during fossil fuel burning, waste management, and combustion and are responsible for global warming. Clay minerals constitute a group of promising materials for the role of adsorbents. They are composed of two types of phyllosilicate sheets: tetrahedral and octahedral, which form 1:1 or 2:1 structures. Vermiculite is one of their best-known representative, which can be used as an adsorbent from water and gaseous phase. The aim of the presented work was carbon dioxide adsorption on vermiculite. Acid-activated samples (W_NO3_x) were prepared by acid treatment with different concentrations of nitric acid (1, 2, 3, 4 mol L⁻¹). Vermiculite was subjected to modification in order to increase its porosity and adsorption properties. The prepared adsorbents were characterized using the BET-specific surface area analysis, thermogravimetry (TG), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Applied modifications significantly increase the specific surface area from 78,21 m² g⁻¹ for the unmodified sample (W_REF) to 536 m² g-1 for W_NO3_4. Obtained results showed that acid treatment tunes the material’s functional properties by increasing the contact surface and generating more active sites in its structure. The adsorption performance in terms carbon dioxide adsorption capacities follows the order of W_REF (25.91 mg g⁻¹) < W_NO3_1 (38.54 mg g⁻¹) < W_NO3_2 (44.03 mg g⁻¹) W_NO3_4 (67.51 mg g⁻¹) < W_NO3_3 (70.48 mg g⁻¹). Acid activation significantly improved the carbon dioxide adsorption properties of modified samples compared to raw material. These results demonstrate that vermiculite-based samples have the potential to be used as effective CO₂ adsorbents. Furthermore, acid treatment is a promising technique for improving the adsorption properties of clay minerals.Keywords: adsorption, adsorbent, clay minerals, air pollution, environment
Procedia PDF Downloads 1475554 Urban Sustainability and Move to Low Carbon Development
Authors: I. P. Singh, Ajesh Kumar Kapoor
Abstract:
Rapid globalization have led to a change towards massive uncontrolled urbanization. Whereas during initial years negligence was there in the name of development, growth and vision toward healthier and better tomorrow. Considering the scenario of developing nations (India) where 70% of their population is living on 30% (urban areas) of their total land available. The need of an hour is to consider the ethical values of each and every person living in urban fringes, whereby the sustainable urban development is promoted which encompasses the move toward low carbon developments. It would help reviving a city lung space and reducing carbon credits as per Kyoto Protocol 1991. This paper would provide an overview about Indian scenario of current urban areas, ongoing developments, series of regulatory policy measures, materials innovative use and policies framed and opted for low carbon development.Keywords: urban sustainability, indicators for sustainable development, low carbon development, Indian Policies toward low carbon development
Procedia PDF Downloads 4145553 Effect of Physicochemical Treatments on the Characteristics of Activated Sludge
Authors: Hammadi Larbi
Abstract:
The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 %Keywords: activated sludge, hydrogen peroxide, thermal treatment, quicklime
Procedia PDF Downloads 1045552 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites
Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli
Abstract:
Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding
Procedia PDF Downloads 1495551 Effect of Salinity on Carbon Isotope Discrimination in Chamomile
Authors: Mehdi Ghanavati
Abstract:
The Effects of salinity level and duration on carbon isotope discrimination (Δ) of Matricaria chamomilla and Matricaria aurea were evaluated. Four ecotypes of M. chamomilla and four ecotypes of M. aurea were grown at different NaCl concentrations (control, 6, 12 and 18 dS/m) in sand culture condition. Carbon isotope discrimination (Δ) varied significantly (p<0.001) among ecotypes. The amount of carbon isotope discrimination (Δ) increased in first salinity level (6 dS/m), but in other levels (12 and 18 dS/m) it did not increase. Stages of salinity treatments (two stages: first from seedling stage until the end of the experiment and second stage of stress exertion began at stem elongation and seedlings emergence from rosette stage to harvest) had not a significant difference. Study of two spices of chamomile showed the M. aurea had a higher amount of carbon isotope discrimination (Δ) (22.9%) than M. chamomilla (22.48%).Keywords: salinity, carbon isotope discrimination, Matricaria chamomilla, Matricaria aurea
Procedia PDF Downloads 4435550 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China
Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun
Abstract:
The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.Keywords: complex adaptive system, low carbon ecology, index system, model
Procedia PDF Downloads 1525549 Removal of Lead in High Rate Activated Sludge System
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda
Abstract:
The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt
Procedia PDF Downloads 5185548 The Construction and Representation of Muslim Identity in Bollywood Commercial Films
Authors: Abonti Mehtaz
Abstract:
The utmost controversial issue that Bollywood movies deal with is religious conflicts and the representation of Islam and or Muslims. The main objective of this paper is to examine that, how Muslim identity is constructed in Bollywood commercial films through the representation of Muslims and/or Islam. Two hypotheses are developed for this study, i.e., (1) Bollywood commercial films often portray the stereotypical image of Muslims. (2) The portrayal of Muslims and Islam in Bollywood commercial films is often negative. (3) Bollywood commercial films frequently construct a wrong and fake identity of Muslims through an inappropriate representation of Muslims and Islam. This study employs qualitative research techniques. To examine the hypotheses of this paper, 10 Bollywood commercial films produced in between 2000-2018 are selected purposively such as Fiza (2000), Gadar: Ek Prem Katha (2001), Company (2002), Aamir (2008), Kurbaan (2009), Anwar (2010), My name is Khan (2010), Raanjhanaa (2013), Omerta (2017) and Pari (2018). By conducting textual analyses of the above mentioned Bollywood commercial films, this paper focuses on different approaches of Muslim identity and their construction as well as representation in Bollywood commercial films in the light of scholarly work in film and cultural studies. Though 10 Bollywood commercial films are selected for contextual analysis, other Bollywood films by other directors are also mentioned in order to establish the hypotheses of this study. Framing theory is used to analyze the media contents. Findings of this study show that all hypotheses are accepted. Bollywood commercial films continually represent Islam and Muslims in incorrect ways and by doing so Bollywood commercial films construct a fallacious Muslim identity. Though the sample size of contents can be considered as a limitation of this study, the findings of the study reveal that how Bollywood commercial film is setting agenda to manipulate the image of Muslims and Islam not only in India but all over the world.Keywords: Bollywood commercial films, Muslim identity, misrepresentation, representation, stereotypical
Procedia PDF Downloads 2105547 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory
Authors: Satyananda Behera, Ritwik Sarkar
Abstract:
In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories
Procedia PDF Downloads 3675546 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference
Procedia PDF Downloads 4215545 Characteristics and Feature Analysis of PCF Labeling among Construction Materials
Authors: Sung-mo Seo, Chang-u Chae
Abstract:
The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.Keywords: carbon labeling, LCI DB, building materials, life cycle assessment
Procedia PDF Downloads 4215544 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend
Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar
Abstract:
Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend
Procedia PDF Downloads 2035543 Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut
Authors: Reza Sadeghi
Abstract:
Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut.Keywords: carbon dioxide, hazelnut, qualitative characteristics, organoleptic
Procedia PDF Downloads 885542 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement
Authors: Sh. Minapoor, S. Ajeli
Abstract:
Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending
Procedia PDF Downloads 2985541 Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes
Authors: Mohammad R. Irshidat, Mohammed H. Al-Saleh, Mahmoud Al-Shoubaki
Abstract:
This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.Keywords: CNT, epoxy, carbon fiber, RC columns
Procedia PDF Downloads 3615540 Production and Evaluation of Enriched Aadun (a Local Maize Snack)
Authors: E. Oluwasola, E. Bamidele, E. Ogunbusola
Abstract:
Enriched “aadun” was produced from maize with, supplemented with cray fish and beans. Sodium chloride (Nacl) was also added to the product which acts as preservatives. The produced enriched “aadun” was compared with commercial “aadun” organoleptically the result of the sensory evaluation carried out on the product showed that there is a statistical significant difference between the mouth feel of enriched and commercial “aadun” at 0.05 level of significance (t=5.499, P<0.05) Similarly, the mean difference between enriched and commercial “aadun” in terms of aroma (t=4.403, P<0.05), taste (t=4.592, P<0.05) colour (t=2.788, P<0.05) and general acceptability (t=3.894, P<0.05) is statistically significant at 95% confidence level in each case, therefore, it is clearly revealed that product 321 (Enriched “aadun”) is more acceptable and significant better than product 432 (commercial “aadun”) in all the attributes evaluated. The proximate analysis using standard methods of analysis was carried out which include the moisture content, ash and protein content for both the enriched aadun and commercial aadun the result showed moisture content 9%, ash 6.2%, protein 19.6% and 12.9% moisture content, 4%ash content, 8.75% protein for the commercial and improved aadun respectively.Keywords: aadun, enriched, maize, supplemented
Procedia PDF Downloads 5565539 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation
Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi
Abstract:
Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration
Procedia PDF Downloads 1415538 Isolation of Bacterial Species with Potential Capacity for Siloxane Removal in Biogas Upgrading
Authors: Ellana Boada, Eric Santos-Clotas, Alba Cabrera-Codony, Maria Martin, Lluis Baneras, Frederic Gich
Abstract:
Volatile methylsiloxanes (VMS) are a group of manmade silicone compounds widely used in household and industrial applications that end up on the biogas produced through the anaerobic digestion of organic matter in landfills and wastewater treatment plants. The presence of VMS during the biogas energy conversion can cause damage on the engines, reducing the efficiency of this renewable energy source. Non regenerative adsorption onto activated carbon is the most widely used technology to remove siloxanes from biogas, while new trends point out that biotechnology offers a low-cost and environmentally friendly alternative to conventional technologies. The first objective of this research was to enrich, isolate and identify bacterial species able to grow using siloxane molecules as a sole carbon source: anoxic wastewater sludge was used as initial inoculum in liquid anoxic enrichments, adding D4 (as representative siloxane compound) previously adsorbed on activated carbon. After several months of acclimatization, liquid enrichments were plated onto solid media containing D4 and thirty-four bacterial isolates were obtained. 16S rRNA gene sequencing allowed the identification of strains belonging to the following species: Ciceribacter lividus, Alicycliphilus denitrificans, Pseudomonas aeruginosa and Pseudomonas citronellolis which are described to be capable to degrade toxic volatile organic compounds. Kinetic assays with 8 representative strains revealed higher cell growth in the presence of D4 compared to the control. Our second objective was to characterize the community composition and diversity of the microbial community present in the enrichments and to elucidate whether the isolated strains were representative members of the community or not. DNA samples were extracted, the 16S rRNA gene was amplified (515F & 806R primer pair), and the microbiome analyzed from sequences obtained with a MiSeq PE250 platform. Results showed that the retrieved isolates only represented a minor fraction of the microorganisms present in the enrichment samples, which were represented by Alpha, Beta, and Gamma proteobacteria as dominant groups in the category class thus suggesting that other microbial species and/or consortia may be important for D4 biodegradation. These results highlight the need of additional protocols for the isolation of relevant D4 degraders. Currently, we are developing molecular tools targeting key genes involved in siloxane biodegradation to identify and quantify the capacity of the isolates to metabolize D4 in batch cultures supplied with a synthetic gas stream of air containing 60 mg m⁻³ of D4 together with other volatile organic compounds found in the biogas mixture (i.e. toluene, hexane and limonene). The isolates were used as inoculum in a biotrickling filter containing lava rocks and activated carbon to assess their capacity for siloxane removal. Preliminary results of biotrickling filter performance showed 35% of siloxane biodegradation in a contact time of 14 minutes, denoting that biological siloxane removal is a promising technology for biogas upgrading.Keywords: bacterial cultivation, biogas upgrading, microbiome, siloxanes
Procedia PDF Downloads 2585537 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst
Authors: Meichen Lee, Michael K. H. Leung
Abstract:
In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.Keywords: microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis
Procedia PDF Downloads 4585536 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India
Authors: Tirthankar Chakraborty, Indranil Mukherjee
Abstract:
The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector
Procedia PDF Downloads 3905535 Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria
Authors: Wai Prathumpai, Pranee Rachtawee, Sutamat Khajeeram, Pariya Na Nakorn
Abstract:
The β-glucan produced by Ophiocordyceps dipterigena BCC 2073 is a (1, 3)-β-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This β-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this β-glucan as the sole carbon source for the in vitro growth of two probiotic bacteria (L. acidophilus BCC 13938 and B. animalis ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% β-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g·L-1 and 2.82 g·L-1, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% β-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (B. subtilis TISTR 008, E. coli TISTR 780, and S. typhimurium TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing L. acidophilus BCC 13938 in the presence of β-glucan inhibited the growth of B. subtilis TISTR 008 by more than 70% and inhibited the growth of both S. typhimurium TISTR 292 and E. coli TISTR 780 by more than 90%. In conclusion, O. dipterigena BCC 2073 is a potential source of a β-glucan prebiotic that could be used for commercial production in the near future.Keywords: beta-glucan, Ophiocordyceps dipterigena, prebiotic, probiotic, antimicrobial
Procedia PDF Downloads 1525534 Managing the Transition from Voluntary to Mandatory Climate Reporting: The Role of Carbon Accounting
Authors: Qingliang Tang
Abstract:
The transition from voluntary to mandatory carbon reporting (also refers to climate reporting) poses serious challenges for accounting professionals aiming to support firms in achieving net-zero goals. The accounting literature addresses the topics that are currently bewildering accounting academics and professional accountants on how to make accounting as a useful tool for the management to achieve a carbon neutral business model. This paper explores the evolving role of carbon accounting within corporate financial reporting systems, emphasizing its integration as a crucial component. Key challenges addressed include data availability, climate risk assessment, defining reporting boundaries, selecting appropriate greenhouse gas (GHG) accounting methodologies, and integrating climate-related events into traditional financial statements. A dynamic, integrated carbon accounting framework is proposed to facilitate this transformative process effectively. Furthermore, the paper identifies critical knowledge gaps and sets forth a research agenda aimed at enhancing transparency and relevance in carbon accounting and reporting systems, thereby empowering informed decision-making. The purpose of the paper is to succinctly capture the essence of carbon accounting practice in the transitional period, focusing on the challenges, proposed solutions, and future research directions in the realm of carbon accounting and mandatory climate reporting.Keywords: mandatory carbon reporting, carbon management, net zero target, sustainability, climate risks
Procedia PDF Downloads 18