Search results for: automated quantification
1143 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)
Authors: Hatib Shabbir
Abstract:
Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.Keywords: aiou dts, dts aiou, dts, degree tracking aiou
Procedia PDF Downloads 2161142 A Preliminary End-Point Approach for Calculating Odorous Emissions in Life Cycle Assessment
Authors: G. M. Cappucci, C. Losi, P. Neri, M. Pini, A. M. Ferrari
Abstract:
Waste treatment and many production processes cause significant emissions of odors, thus typically leading to intense debate. The introduction of odorimetric units and their units of measurement, i.e., U.O. / m3, with the European regulation UE 13725 of 2003 designates the dynamic olfactometry as the official method for odorimetric analysis. Italy has filled the pre-existing legislative gap on the regulation of odorous emissions only recently, by introducing the Legislative Decree n°183 in 2017. The concentration of the odor to which a perceptive response occurs to 50% of the panel corresponds to the odorimetric unit of the sample under examination (1 U.O. / m3) and is equal to the threshold of perceptibility of the substance (O.T.). In particular, the treatment of Municipal Solid Waste (MSW) by Mechanical-Biological Treatment (MBT) plants produces odorous emissions, typically generated by aerobic procedures, potentially leading to significant environmental burdens. The quantification of odorous emissions represents a challenge within a LCA study since primary data are often missing. The aim of this study is to present the preliminary findings of an ongoing study whose aim is to identify and quantify odor emissions from the Tre Monti MBT plant, located in Imola (Bologna, Italy). Particularly, the issues faced with odor emissions in the present work are: i) the identification of the components of the gaseous mixture, whose total quantification in terms of odorimetric units is known, ii) the distribution of the total odorimetric units among the single substances identified and iii) the quantification of the mass emitted for each substance. The environmental analysis was carried out on the basis of the amount of emitted substance. The calculation method IMPact Assessment of Chemical Toxics (IMPACT) 2002+ has been modified since the original one does not take into account indoor emissions. Characterization factors were obtained by adopting a preliminary method in order to calculate indoor human effects. The impact and damage assessments were performed without the identification of new categories, thus in accordance with the categories of the selected calculation method. The results show that the damage associated to odorous emissions is the 0.24% of the total damage, and the most affected damage category is Human Health, mainly as a consequence of ammonia emission (86.06%). In conclusion, this preliminary approach allowed identifying and quantifying the substances responsible for the odour impact, in order to attribute them the relative damage on human health as well as ecosystem quality.Keywords: life cycle assessment, municipal solid waste, odorous emissions, waste treatment
Procedia PDF Downloads 1721141 A Review of Kinematics and Joint Load Forces in Total Knee Replacements Influencing Surgical Outcomes
Authors: Samira K. Al-Nasser, Siamak Noroozi, Roya Haratian, Adrian Harvey
Abstract:
A total knee replacement (TKR) is a surgical procedure necessary when there is severe pain and/or loss of function in the knee. Surgeons balance the load in the knee and the surrounding soft tissue by feeling the tension at different ranges of motion. This method can be unreliable and lead to early failure of the joint. The ideal kinematics and load distribution have been debated significantly based on previous biomechanical studies surrounding both TKRs and normal knees. Intraoperative sensors like VERASENSE and eLibra have provided a method for the quantification of the load indicating a balanced knee. A review of the literature written about intraoperative sensors and tension/stability of the knee was done. Studies currently debate the quantification of the load in medial and lateral compartments specifically. However, most research reported that following a TKR the medial compartment was loaded more heavily than the lateral compartment. In several cases, these results were shown to increase the success of the surgery because they mimic the normal kinematics of the knee. In conclusion, most research agrees that an intercompartmental load differential of between 10 and 20 pounds, where the medial load was higher than the lateral, and an absolute load of less than 70 pounds was ideal. However, further intraoperative sensor development could help improve the accuracy and understanding of the load distribution on the surgical outcomes in a TKR. A reduction in early revision surgeries for TKRs would provide an improved quality of life for patients and reduce the economic burden placed on both the National Health Service (NHS) and the patient.Keywords: intraoperative sensors, joint load forces, kinematics, load balancing, and total knee replacement
Procedia PDF Downloads 1351140 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 91139 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements
Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono
Abstract:
The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.Keywords: hip joint center, motion capture, soft tissue artefact, ultrasound depth measurement
Procedia PDF Downloads 2801138 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest
Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda
Abstract:
To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates
Procedia PDF Downloads 951137 Design of Semi-Autonomous Street Cleaning Vehicle
Authors: Khouloud Safa Azoud, Süleyman Baştürk
Abstract:
In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems
Procedia PDF Downloads 331136 Knowledge Diffusion via Automated Organizational Cartography (Autocart)
Authors: Mounir Kehal
Abstract:
The post-globalization epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behavior has come to provide the competitive and comparative edge. Enterprises have turned to explicit - and even conceptualizing on tacit - knowledge management to elaborate a systematic approach to develop and sustain the intellectual capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualized. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper, we present an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 3061135 Detection and Quantification of Ochratoxin A in Food by Aptasensor
Authors: Moez Elsaadani, Noel Durand, Brice Sorli, Didier Montet
Abstract:
Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators.Keywords: aptamer, aptasensor, detection, Ochratoxin A
Procedia PDF Downloads 1801134 Development of an Automatic Monitoring System Based on the Open Architecture Concept
Authors: Andrii Biloshchytskyi, Serik Omirbayev, Alexandr Neftissov, Sapar Toxanov, Svitlana Biloshchytska, Adil Faizullin
Abstract:
Kazakhstan has adopted a carbon neutrality strategy until 2060. In accordance with this strategy, it is necessary to introduce various tools to maintain the environmental safety of the environment. The use of IoT, in combination with the characteristics and requirements of Kazakhstan's environmental legislation, makes it possible to develop a modern environmental monitoring system. The article proposes a solution for developing an example of an automated system for the continuous collection of data on the concentration of pollutants in the atmosphere based on an open architecture. The Audino-based device acts as a microcontroller. It should be noted that the transmission of measured values is carried out via an open wireless communication protocol. The architecture of the system, which was used to build a prototype based on sensors, an Arduino microcontroller, and a wireless data transmission module, is presented. The selection of elementary components may change depending on the requirements of the system; the introduction of new units is limited by the number of ports. The openness of solutions allows you to change the configuration depending on the conditions. The advantages of the solutions are openness, low cost, versatility and mobility. However, there is no comparison of the working processes of the proposed solution with traditional ones.Keywords: environmental monitoring, greenhouse gases emissions, environmental pollution, Industry 4.0, IoT, microcontroller, automated monitoring system.
Procedia PDF Downloads 461133 Automated Human Balance Assessment Using Contactless Sensors
Authors: Justin Tang
Abstract:
Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.Keywords: automated, concussion detection, contactless sensors, microsoft kinect
Procedia PDF Downloads 3161132 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 941131 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 1621130 The Role of Twitter Bots in Political Discussion on 2019 European Elections
Authors: Thomai Voulgari, Vasilis Vasilopoulos, Antonis Skamnakis
Abstract:
The aim of this study is to investigate the effect of the European election campaigns (May 23-26, 2019) on Twitter achieving with artificial intelligence tools such as troll factories and automated inauthentic accounts. Our research focuses on the last European Parliamentary elections that took place between 23 and 26 May 2019 specifically in Italy, Greece, Germany and France. It is difficult to estimate how many Twitter users are actually bots (Echeverría, 2017). Detection for fake accounts is becoming even more complicated as AI bots are made more advanced. A political bot can be programmed to post comments on a Twitter account for a political candidate, target journalists with manipulated content or engage with politicians and artificially increase their impact and popularity. We analyze variables related to 1) the scope of activity of automated bots accounts and 2) degree of coherence and 3) degree of interaction taking into account different factors, such as the type of content of Twitter messages and their intentions, as well as the spreading to the general public. For this purpose, we collected large volumes of Twitter accounts of party leaders and MEP candidates between 10th of May and 26th of July based on content analysis of tweets based on hashtags while using an innovative network analysis tool known as MediaWatch.io (https://mediawatch.io/). According to our findings, one of the highest percentage (64.6%) of automated “bot” accounts during 2019 European election campaigns was in Greece. In general terms, political bots aim to proliferation of misinformation on social media. Targeting voters is a way that it can be achieved contribute to social media manipulation. We found that political parties and individual politicians create and promote purposeful content on Twitter using algorithmic tools. Based on this analysis, online political advertising play an important role to the process of spreading misinformation during elections campaigns. Overall, inauthentic accounts and social media algorithms are being used to manipulate political behavior and public opinion.Keywords: artificial intelligence tools, human-bot interactions, political manipulation, social networking, troll factories
Procedia PDF Downloads 1371129 Viability of Irrigation Water Conservation Practices in the Low Desert of California
Authors: Ali Montazar
Abstract:
California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase.Keywords: automated surface irrigation, deficit irrigation, low desert of California, sprinkler irrigation, sub-surface drip irrigation, tail-water recovery system
Procedia PDF Downloads 1541128 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1001127 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain
Authors: G. Hafner
Abstract:
A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency
Procedia PDF Downloads 4041126 Field Production Data Collection, Analysis and Reporting Using Automated System
Authors: Amir AlAmeeri, Mohamed Ibrahim
Abstract:
Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast
Procedia PDF Downloads 1551125 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property
Authors: Latika Choudhary
Abstract:
“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.Keywords: intellectual property rights, information technology, algorithm, artificial intelligence
Procedia PDF Downloads 851124 Knowledge Diffusion via Automated Organizational Cartography: Autocart
Authors: Mounir Kehal, Adel Al Araifi
Abstract:
The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 4161123 Metropolis-Hastings Sampling Approach for High Dimensional Testing Methods of Autonomous Vehicles
Authors: Nacer Eddine Chelbi, Ayet Bagane, Annie Saleh, Claude Sauvageau, Denis Gingras
Abstract:
As recently stated by National Highway Traffic Safety Administration (NHTSA), to demonstrate the expected performance of a highly automated vehicles system, test approaches should include a combination of simulation, test track, and on-road testing. In this paper, we propose a new validation method for autonomous vehicles involving on-road tests (Field Operational Tests), test track (Test Matrix) and simulation (Worst Case Scenarios). We concentrate our discussion on the simulation aspects, in particular, we extend recent work based on Importance Sampling by using a Metropolis-Hasting algorithm (MHS) to sample collected data from the Safety Pilot Model Deployment (SPMD) in lane-change scenarios. Our proposed MH sampling method will be compared to the Importance Sampling method, which does not perform well in high-dimensional problems. The importance of this study is to obtain a sampler that could be applied to high dimensional simulation problems in order to reduce and optimize the number of test scenarios that are necessary for validation and certification of autonomous vehicles.Keywords: automated driving, autonomous emergency braking (AEB), autonomous vehicles, certification, evaluation, importance sampling, metropolis-hastings sampling, tests
Procedia PDF Downloads 2871122 Tool Development for Assessing Antineoplastic Drugs Surface Contamination in Healthcare Services and Other Workplaces
Authors: Benoit Atge, Alice Dhersin, Oscar Da Silva Cacao, Beatrice Martinez, Dominique Ducint, Catherine Verdun-Esquer, Isabelle Baldi, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin
Abstract:
Introduction: Healthcare workers' exposure to antineoplastic drugs (AD) is a burning issue for occupational medicine practitioners. Biological monitoring of occupational exposure (BMOE) is an essential tool for assessing AD contamination of healthcare workers. In addition to BMOE, surface sampling is a useful tool in order to understand how workers get contaminated, to identify sources of environmental contamination, to verify the effectiveness of surface decontamination way and to ensure monitoring of these surfaces. The objective of this work was to develop a complete tool including a kit for surface sampling and a quantification analytical method for AD traces detection. The development was realized with the three following criteria: the kit capacity to sample in every professional environment (healthcare services, veterinaries, etc.), the detection of very low AD traces with a validated analytical method and the easiness of the sampling kit use regardless of the person in charge of sampling. Material and method: AD mostly used in term of quantity and frequency have been identified by an analysis of the literature and consumptions of different hospitals, veterinary services, and home care settings. The kind of adsorbent device, surface moistening solution and mix of solvents for the extraction of AD from the adsorbent device have been tested for a maximal yield. The AD quantification was achieved by an ultra high-performance liquid chromatography method coupled with tandem mass spectrometry (UHPLC-MS/MS). Results: With their high frequencies of use and their good reflect of the diverse activities through healthcare, 15 AD (cyclophosphamide, ifosfamide, doxorubicin, daunorubicin, epirubicin, 5-FU, dacarbazin, etoposide, pemetrexed, vincristine, cytarabine, methothrexate, paclitaxel, gemcitabine, mitomycin C) were selected. The analytical method was optimized and adapted to obtain high sensitivity with very low limits of quantification (25 to 5000ng/mL), equivalent or lowest that those previously published (for 13/15 AD). The sampling kit is easy to use, provided with a didactic support (online video and protocol paper). It showed its effectiveness without inter-individual variation (n=5/person; n= 5 persons; p=0,85; ANOVA) regardless of the person in charge of sampling. Conclusion: This validated tool (sampling kit + analytical method) is very sensitive, easy to use and very didactic in order to control the chemical risk brought by AD. Moreover, BMOE permits a focal prevention. Used in routine, this tool is available for every intervention of occupational health.Keywords: surface contamination, sampling kit, analytical method, sensitivity
Procedia PDF Downloads 1301121 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 2351120 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation
Authors: Ali Al-Ghalib, Fouad Mohammad
Abstract:
The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam
Procedia PDF Downloads 2621119 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee
Abstract:
Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance
Procedia PDF Downloads 841118 Information Communication Technologies and Renewable Technologies' Impact on Irish People's Lifestyle: A Constructivist Grounded Theory Study
Authors: Hamilton V. Niculescu
Abstract:
This paper discusses findings relating to people's engagement with mobile communication technologies and remote automated systems. This interdisciplinary study employs a constructivist grounded theory methodology, with qualitative data that was generated following in-depth semi-structured interviews with 18 people living in Ireland being corroborated with participants' observations and quantitative data. Additional data was collected following participants' remote interaction with six custom-built automated enclosures, located at six different sites around Dublin, Republic of Ireland. This paper argues that ownership and education play a vital role in people engaging with and adoption of new technologies. Analysis of participants' behavior and attitude towards Information Communication Technologies (ICT) suggests that innovations do not always improve peoples' social inclusion. Technological innovations are sometimes perceived as destroying communities and create a dysfunctional society. Moreover, the findings indicate that a lack of public information and support from Irish governmental institutions, as well as limited off-the-shelves availability, has led to low trust and adoption of renewable technologies. A limited variation in participants' behavior and interaction patterns with technologies was observed during the study. This suggests that people will eventually adopt new technologies according to their needs and experience, even though they initially rejected the idea of changing their lifestyle.Keywords: automation, communication, ICT, renewables
Procedia PDF Downloads 1101117 Quantitative Evaluation of Mitral Regurgitation by Using Color Doppler Ultrasound
Authors: Shang-Yu Chiang, Yu-Shan Tsai, Shih-Hsien Sung, Chung-Ming Lo
Abstract:
Mitral regurgitation (MR) is a heart disorder which the mitral valve does not close properly when the heart pumps out blood. MR is the most common form of valvular heart disease in the adult population. The diagnostic echocardiographic finding of MR is straightforward due to the well-known clinical evidence. In the determination of MR severity, quantification of sonographic findings would be useful for clinical decision making. Clinically, the vena contracta is a standard for MR evaluation. Vena contracta is the point in a blood stream where the diameter of the stream is the least, and the velocity is the maximum. The quantification of vena contracta, i.e. the vena contracta width (VCW) at mitral valve, can be a numeric measurement for severity assessment. However, manually delineating the VCW may not accurate enough. The result highly depends on the operator experience. Therefore, this study proposed an automatic method to quantify VCW to evaluate MR severity. Based on color Doppler ultrasound, VCW can be observed from the blood flows to the probe as the appearance of red or yellow area. The corresponding brightness represents the value of the flow rate. In the experiment, colors were firstly transformed into HSV (hue, saturation and value) to be closely align with the way human vision perceives red and yellow. Using ellipse to fit the high flow rate area in left atrium, the angle between the mitral valve and the ultrasound probe was calculated to get the vertical shortest diameter as the VCW. Taking the manual measurement as the standard, the method achieved only 0.02 (0.38 vs. 0.36) to 0.03 (0.42 vs. 0.45) cm differences. The result showed that the proposed automatic VCW extraction can be efficient and accurate for clinical use. The process also has the potential to reduce intra- or inter-observer variability at measuring subtle distances.Keywords: mitral regurgitation, vena contracta, color doppler, image processing
Procedia PDF Downloads 3691116 The Automated Soil Erosion Monitoring System (ASEMS)
Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos
Abstract:
The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.Keywords: soil management, climate change, new technologies, conservation practices
Procedia PDF Downloads 3441115 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 161114 Glycan Analyzer: Software to Annotate Glycan Structures from Exoglycosidase Experiments
Authors: Ian Walsh, Terry Nguyen-Khuong, Christopher H. Taron, Pauline M. Rudd
Abstract:
Glycoproteins and their covalently bonded glycans play critical roles in the immune system, cell communication, disease and disease prognosis. Ultra performance liquid chromatography (UPLC) coupled with mass spectrometry is conventionally used to qualitatively and quantitatively characterise glycan structures in a given sample. Exoglycosidases are enzymes that catalyze sequential removal of monosaccharides from the non-reducing end of glycans. They naturally have specificity for a particular type of sugar, its stereochemistry (α or β anomer) and its position of attachment to an adjacent sugar on the glycan. Thus, monitoring the peak movements (both in the UPLC and MS1) after application of exoglycosidases provides a unique and effective way to annotate sugars with high detail - i.e. differentiating positional and linkage isomers. Manual annotation of an exoglycosidase experiment is difficult and time consuming. As such, with increasing sample complexity and the number of exoglycosidases, the analysis could result in manually interpreting hundreds of peak movements. Recently, we have implemented pattern recognition software for automated interpretation of UPLC-MS1 exoglycosidase digestions. In this work, we explain the software, indicate how much time it will save and provide example usage showing the annotation of positional and linkage isomers in Immunoglobulin G, apolipoprotein J, and simple glycan standards.Keywords: bioinformatics, automated glycan assignment, liquid chromatography, mass spectrometry
Procedia PDF Downloads 198