Search results for: adversarial attacks
452 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices
Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez
Abstract:
Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration
Procedia PDF Downloads 141451 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 205450 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6
Authors: M. Moslehpour, S. Khorsandi
Abstract:
Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing
Procedia PDF Downloads 278449 Effects of Blast Load on Historic Stone Masonry Buildings in Canada: A Review and Analytical Study
Authors: Abass Braimah, Maha Hussein Abdallah
Abstract:
The global ascendancy of terrorist attacks on building infrastructure with economic and heritage significance has increased awareness of the possibility of terrorism in Canada. Many structures in Canada that are at risk of terrorist attacks include government buildings, built many years ago of historic stone masonry construction. Although many researchers are investigating ways to retrofit masonry stone buildings to mitigate the effect of blast loadings, lack of knowledge on the dynamic behavior of historic stone masonry structures under blast loads makes it difficult to ascertain the effectiveness of the retrofitting techniques. This paper presents a review of open-source literature for the experimental and numerical stone masonry structures under blast loads. This review yielded very little information of the response of the historic stone masonry structures under blast loads. Thus, a comprehensive study is needed to understand the blast load effects on historic stone masonry buildings. The out-of-plane response of historic masonry structures to blast loads is investigated by using single-degree-of-freedom analysis. This approach presents equations that can be used effectively in the analysis of historic masonry walls to out-of-plane blast loading.Keywords: blast loads, historical buildings, masonry structure, single-degree-of-freedom analysis
Procedia PDF Downloads 184448 On Fault Diagnosis of Asynchronous Sequential Machines with Parallel Composition
Authors: Jung-Min Yang
Abstract:
Fault diagnosis of composite asynchronous sequential machines with parallel composition is addressed in this paper. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The objective is to characterize the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state is impossible since the current state is inaccessible and the output feedback is given as the form of burst. A simple example is provided to demonstrate the proposed methodology.Keywords: asynchronous sequential machines, parallel composition, fault diagnosis, corrective control
Procedia PDF Downloads 298447 A Functional Analysis of the 2016 United States Presidential Debates through the Application of the Functional Theory of Political Campaign Discourse
Authors: Maryam Vaezi
Abstract:
In this study, the Functional Theory of Political Campaign Discourse has been applied in order to investigate the 2016 Clinton-Trump presidential debates. All three kinds of utterances (acclaims, attacks, and defenses) were produced by the candidates supporting the usefulness of the Functional Theory of Political Campaign Discourse for the analysis of the presidential debates as a type of political discourse. Attacks comprised 45% of the candidates’ utterances, followed by acclaims at 33%; defenses were the least common function at 22%. The candidate from the Democratic Party, Hillary Clinton, acclaimed more, whereas the Republican Party presidential candidate, Donald Trump, attacked more. Simple denial was the most common form of defense used by the candidates. Both candidates directed more of their utterances to policy (past deeds, future plans, and general goals) than character (personal qualities, leadership abilities, and ideals). Analyzing debates in terms of the functions performed by the candidates to increase their desirability and chance of winning the election, can lead to a better understanding of these significant political events as well as other forms of political discourse.Keywords: acclaim, attack, defend, character, Democratic Party, Donald Trump, Hillary Clinton, policy, presidential debates, Republican Party
Procedia PDF Downloads 335446 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 414445 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 161444 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: malware detection, network security, targeted attack, computational intelligence
Procedia PDF Downloads 263443 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality
Authors: Georgi Bebrov, Rozalina Dimova
Abstract:
In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.Keywords: quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality
Procedia PDF Downloads 184442 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 167441 Utilisation of Sports and Games for Psychosocial Rehabilitation of Internally Displaced Persons in Maiduguri, Nigeria
Authors: Stephen Hamafyelto, Hussaini Garba, Mary Pindar Ndahi
Abstract:
The study was carried out with the intent to mitigate the trauma experienced by victims of insurgent attacks by the so-called Boko Haram militants in Borno state of Nigeria. The area was ridden by the crisis over the past 9 years. As a result, many people were killed, maimed and raped. Some others suffered all manner of inhuman treatment at the hands of their captors. The extent to which this dehumanized treatment has gone and impacted on the people in this area has left most of them traumatised. Victims who survived the attacks have been resettled in camps provided by government where their needs have been cared for. This can never be the same with their natural habitats. Many interventions have also been done by government, non-governmental organisations and corporate and individual bodies. In this regard, social needs of the victims have been the immediate concerns of most organisations, where food, shelter, and clothing were provided. However, there is little that has been done to rehabilitate these victims psychosocially. In this regard, sports and games including the victims’ local games were used to provide psychosocial rehabilitation of victims. The intent was to bring them back to social reality, social inclusion, and stable emotions and peer integration. Descriptive statistics and Multivariate analysis were done. No statistically significant difference was found among male and female children and adults in terms of psychosocial rehabilitation using sports and games.Keywords: social reality, social inclusion, emotional intellegence, peer model
Procedia PDF Downloads 205440 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 403439 Bitcoin, Blockchain and Smart Contract: Attacks and Mitigations
Authors: Mohamed Rasslan, Doaa Abdelrahman, Mahmoud M. Nasreldin, Ghada Farouk, Heba K. Aslan
Abstract:
Blockchain is a distributed database that endorses transparency while bitcoin is a decentralized cryptocurrency (electronic cash) that endorses anonymity and is powered by blockchain technology. Smart contracts are programs that are stored on a blockchain. Smart contracts are executed when predetermined conditions are fulfilled. Smart contracts automate the agreement execution in order to make sure that all participants immediate-synchronism of the outcome-certainty, without any intermediary's involvement or time loss. Currently, the Bitcoin market worth billions of dollars. Bitcoin could be transferred from one purchaser to another without the need for an intermediary bank. Network nodes through cryptography verify bitcoin transactions, which are registered in a public-book called “blockchain”. Bitcoin could be replaced by other coins, merchandise, and services. Rapid growing of the bitcoin market-value, encourages its counterparts to make use of its weaknesses and exploit vulnerabilities for profit. Moreover, it motivates scientists to define known vulnerabilities, offer countermeasures, and predict future threats. In his paper, we study blockchain technology and bitcoin from the attacker’s point of view. Furthermore, mitigations for the attacks are suggested, and contemporary security solutions are discussed. Finally, research methods that achieve strict security and privacy protocol are elaborated.Keywords: Cryptocurrencies, Blockchain, Bitcoin, Smart Contracts, Peer-to-Peer Network, Security Issues, Privacy Techniques
Procedia PDF Downloads 82438 A Review on Factors Influencing Implementation of Secure Software Development Practices
Authors: Sri Lakshmi Kanniah, Mohd Naz’ri Mahrin
Abstract:
More and more businesses and services are depending on software to run their daily operations and business services. At the same time, cyber-attacks are becoming more covert and sophisticated, posing threats to software. Vulnerabilities exist in the software due to the lack of security practices during the phases of software development. Implementation of secure software development practices can improve the resistance to attacks. Many methods, models and standards for secure software development have been developed. However, despite the efforts, they still come up against difficulties in their deployment and the processes are not institutionalized. There is a set of factors that influence the successful deployment of secure software development processes. In this study, the methodology and results from a systematic literature review of factors influencing the implementation of secure software development practices is described. A total of 44 primary studies were analysed as a result of the systematic review. As a result of the study, a list of twenty factors has been identified. Some of factors that affect implementation of secure software development practices are: Involvement of the security expert, integration between security and development team, developer’s skill and expertise, development time and communication between stakeholders. The factors were further classified into four categories which are institutional context, people and action, project content and system development process. The results obtained show that it is important to take into account organizational, technical and people issues in order to implement secure software development initiatives.Keywords: secure software development, software development, software security, systematic literature review
Procedia PDF Downloads 377437 Static Analysis of Security Issues of the Python Packages Ecosystem
Authors: Adam Gorine, Faten Spondon
Abstract:
Python is considered the most popular programming language and offers its own ecosystem for archiving and maintaining open-source software packages. This system is called the python package index (PyPI), the repository of this programming language. Unfortunately, one-third of these software packages have vulnerabilities that allow attackers to execute code automatically when a vulnerable or malicious package is installed. This paper contributes to large-scale empirical studies investigating security issues in the python ecosystem by evaluating package vulnerabilities. These provide a series of implications that can help the security of software ecosystems by improving the process of discovering, fixing, and managing package vulnerabilities. The vulnerable dataset is generated using the NVD, the national vulnerability database, and the Snyk vulnerability dataset. In addition, we evaluated 807 vulnerability reports in the NVD and 3900 publicly known security vulnerabilities in Python Package Manager (pip) from the Snyk database from 2002 to 2022. As a result, many Python vulnerabilities appear in high severity, followed by medium severity. The most problematic areas have been improper input validation and denial of service attacks. A hybrid scanning tool that combines the three scanners bandit, snyk and dlint, which provide a clear report of the code vulnerability, is also described.Keywords: Python vulnerabilities, bandit, Snyk, Dlint, Python package index, ecosystem, static analysis, malicious attacks
Procedia PDF Downloads 139436 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks
Authors: Guanghua Zhang, Fubao Wang, Weijun Duan
Abstract:
Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.Keywords: convolution neural network, discriminator, generator, unsupervised learning
Procedia PDF Downloads 268435 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups
Authors: John Hardy
Abstract:
Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism
Procedia PDF Downloads 291434 Effect of Grafting and Rain Shelter Technologies on Performance of Tomato (Lycopersicum esculentum Mill.)
Authors: Evy Latifah, Eli Korlina, Hanik Anggraeni, Kuntoro Boga, Joko Mariyono
Abstract:
During the rainy season, the tomato plants are vulnerable to various diseases. A disease that attacks the leaves of tomato plants (foliar diseases) such as late blight (Phytophtora infestans) and spotting bacteria (bacterial spot / Xanthomonas sp.) In addition, there is a disease that attacks the roots such as fusarium and bacterial wilt. If not immediately anticipated, it will decrease the quality and quantity of crop yields. In fact, it can lead to crop failure. The aim of this research is to know the production of tomato grafting by using Timoty and CLN 3024 tomatoes at rain shelter during rainy season in lowland. Data were analyzed using analysis of variance and tested further by Least Significant Difference (LSD) level of 5 %. The parameters measured were plant height (cm), stem diameter (cm), number of fruit space, canopy extended, number of branches, number of productive branches, and the number of stem segments. The results show at the beginning of growth until the end of the treatment without grafting with relative rain shelter displays the highest plant height. This was followed by extensive crop canopy. For tomato grafting and non-grafting using rain shelter able to produce the number of branches and number of productive branches at most. While at the end of the growth in the number of productive branches generated as much. Highest production of tomatoes produced by tomato dig rafting to use the shelter.Keywords: field trail, wet and dry season, production, diseases, rain shelter
Procedia PDF Downloads 228433 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems
Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos
Abstract:
Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system
Procedia PDF Downloads 183432 Evaluation of Cryoablation Procedures in Treatment of Atrial Fibrillation from 3 Years' Experiences in a Single Heart Center
Authors: J. Yan, B. Pieper, B. Bucsky, B. Nasseri, S. Klotz, H. H. Sievers, S. Mohamed
Abstract:
Cryoablation is evermore applied for interventional treatment of paroxysmal (PAAF) or persistent atrial fibrillation (PEAF). In the cardiac surgery, this procedure is often combined with coronary arterial bypass graft (CABG) and valve operations. Three different methods are feasible in this sense in respect to practicing extents and mechanisms such as lone left atrial cryoablation, Cox-Maze IV and III in our heart center. 415 patients (68 ± 0.8ys, male 68.2%) with predisposed atrial fibrillation who initially required either coronary or valve operations were enrolled and divided into 3 matched groups according to deployed procedures: CryoLA-group (cryoablation of lone left atrium, n=94); Cox-Maze-IV-group (n=93) and Cox-Maze-III-group (n=8). All patients additionally received closure of the left atrial appendage (LAA) and regularly underwent three-year ambulant follow-up assessments (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation were assessed directly by means of cardiac monitor (Reveal XT, Medtronic) or of 3-day Holter electrocardiogram. Herewith, attacks frequencies of AF and their circadian patterns were systemically analyzed. Furthermore, anticoagulants and regular rate-/rhythm-controlling medications were evaluated and listed in terms of anti-rate and anti-rhythm regimens. Concerning PAAF treatment, Cox Maze IV procedure provided therapeutically acceptable effect as lone left atrium (LA) cryoablation did (5.25 ± 5.25% vs. 10.39 ± 9.96% AF-burden, p > 0.05). Interestingly, Cox Maze III method presented a better short-term effect in the PEAF therapy in comparison to lone cryoablation of LA and Cox Maze IV (0.25 ± 0.23% vs. 15.31 ± 5.99% and 9.10 ± 3.73% AF-burden within the first year, p < 0.05). But this therapeutic advantage went lost during ongoing follow-ups (26.65 ± 24.50% vs. 8.33 ± 8.06% and 15.73 ± 5.88% in 3rd follow-up year). In this way, lone LA-cryoablation established its antiarrhythmic efficacy and 69.5% patients were released from the Vit-K-antagonists, while Cox Maze IV liberated 67.2% patients from continuous anticoagulant medication. The AF-recurrences mostly performed such attacks property as less than 60min duration for all 3 procedures (p > 0.05). In the sense of the circadian distribution of the recurrence attacks, weighted by ongoing follow-ups, lone LA cryoablation achieved and stabilized the antiarrhythmic effects over time, which was especially observed in the treatment of PEAF, while Cox Maze IV and III had their antiarrhythmic effects weakened progressively. This phenomenon was likewise evaluable in the therapy of circadian rhythm of reverting AF-attacks. Furthermore, the strategy of rate control was much more often applied to support and maintain therapeutic successes obtained than the one of rhythm control. Derived from experiences in our heart center, lone LA cryoablation presented equivalent effects in the treatment of AF in comparison to Cox Maze IV and III procedures. These therapeutic successes were especially investigable in the patients suffering from persistent AF (PEAF). Additional supportive strategies such as rate control regime should be initialized and implemented to improve the therapeutic effects of the cryoablations according to appropriate criteria.Keywords: AF-burden, atrial fibrillation, cardiac monitor, COX MAZE, cryoablation, Holter, LAA
Procedia PDF Downloads 204431 A Location-based Authentication and Key Management Scheme for Border Surveillance Wireless Sensor Networks
Authors: Walid Abdallah, Noureddine Boudriga
Abstract:
Wireless sensor networks have shown their effectiveness in the deployment of many critical applications especially in the military domain. Border surveillance is one of these applications where a set of wireless sensors are deployed along a country border line to detect illegal intrusion attempts to the national territory and report this to a control center to undergo the necessary measures. Regarding its nature, this wireless sensor network can be the target of many security attacks trying to compromise its normal operation. Particularly, in this application the deployment and location of sensor nodes are of great importance for detecting and tracking intruders. This paper proposes a location-based authentication and key distribution mechanism to secure wireless sensor networks intended for border surveillance where the key establishment is performed using elliptic curve cryptography and identity-based public key scheme. In this scheme, the public key of each sensor node will be authenticated by keys that depend on its position in the monitored area. Before establishing a pairwise key between two nodes, each one of them must verify the neighborhood location of the other node using a message authentication code (MAC) calculated on the corresponding public key and keys derived from encrypted beacon messages broadcast by anchor nodes. We show that our proposed public key authentication and key distribution scheme is more resilient to node capture and node replication attacks than currently available schemes. Also, the achievement of the key distribution between nodes in our scheme generates less communication overhead and hence increases network performances.Keywords: wireless sensor networks, border surveillance, security, key distribution, location-based
Procedia PDF Downloads 659430 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 101429 Counter-Terrorism Policies in the Wider Black Sea Region: Evaluating the Robustness of Constantza Port under Potential Terror Attacks
Authors: A. V. Popa, C. Barna, V. Mihalache
Abstract:
Being the largest port at the Black Sea and functioning as a civil and military nodal point between Europe and Asia, Constantza Port has become a potential target on the terrorist international agenda. The authors use qualitative research based on both face-to-face and online semi-structured interviews with relevant stakeholders (top decision-makers in the Romanian Naval Authority, Romanian Maritime Training Centre, National Company "Maritime Ports Administration" and military staff) in order to detect potential vulnerabilities which might be exploited by terrorists in the case of Constantza Port. Likewise, this will enable bringing together the experts’ opinions on potential mitigation measures. Subsequently, this paper formulates various counter-terrorism policies to enhance the robustness of Constantza Port under potential terror attacks and connects them with the attributions in the field of critical infrastructure protection conferred by the law to the lead national authority for preventing and countering terrorism, namely the Romanian Intelligence Service. Extending the national counterterrorism efforts to an international level, the authors propose the establishment – among the experts of the NATO member states of the Wider Black Sea Region – of a platform for the exchange of know-how and best practices in the field of critical infrastructure protection.Keywords: Constantza Port, counter-terrorism policies, critical infrastructure protection, security, Wider Black Sea Region
Procedia PDF Downloads 295428 Islamophobia, Years After 9/11: An Assessment of the American Media
Authors: Nasa'i Muhammad Gwadabe
Abstract:
This study seeks to find the extent to which the old Islamophobic prejudice was tilted towards a more negative direction in the United States following the 9/11 terrorist attacks. It is hypothesized that, the 9/11 attacks in the United States reshaped the old Islamophobic prejudice through the reinforcement of a strong social identity construction of Muslims as “out-group”. The “social identity” and “discourse representation” theories are used as framework for analysis. To test the hypothesis, two categories were created: the prejudice (out-group) and the tolerance (in-group) categories. The Prejudice (out-group) against Muslims category was coded to include six attributes: (Terrorist, Threat, Women's Rights violation, Undemocratic, Backward and Intolerant); while the tolerance (In-group) for Muslims category was also coded to include six attributes: (Peaceful, civilized, educated, partners trustworthy and honest). Data are generated from the archives of three American newspapers: The Los Angeles Times, New York Times and USA Today using specific search terms and specific date range; from 9/11/1996 to 9/11/2006, that is five years before and five years after the 9/11. An aggregate of 20595 articles were generated from the search of the three newspapers throughout the search periods. Conclusively, for both pre and post 9/11 periods, the articles generated under the category of prejudice (out-group) against Muslims revealed a higher frequency, against that of tolerance (in-group) for them, which is lesser. Finally, The comparison between the pre and post 9/11 periods showed that, the increased Prejudice (out-group) against Muslims was most influenced through libeling them as terrorist, which signaled a skyrocketed increase from pre to post 9/11.Keywords: in-group, Islam, Islamophobia, Muslims, out-group, prejudice, terrorism, the 9/11 and tolerance
Procedia PDF Downloads 305427 Innovations and Challenges: Multimodal Learning in Cybersecurity
Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley
Abstract:
There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.Keywords: cybersecurity, new york, city college, graduate degree, master of science
Procedia PDF Downloads 147426 Seaworthiness and Liability Risks Involving Technology and Cybersecurity in Transport and Logistics
Authors: Eugene Wong, Felix Chan, Linsey Chen, Joey Cheung
Abstract:
The widespread use of technologies and cyber/digital means for complex maritime operations have led to a sharp rise in global cyber-attacks. They have generated an increasing number of liability disputes, insurance claims, and legal proceedings. An array of antiquated case law, regulations, international conventions, and obsolete contractual clauses drafted in the pre-technology era have become grossly inadequate in addressing the contemporary challenges. This paper offers a critique of the ambiguity of cybersecurity liabilities under the obligation of seaworthiness entailed in the Hague-Visby Rules, which apply either by law in a large number of jurisdictions or by express incorporation into the shipping documents. This paper also evaluates the legal and technological criteria for assessing whether a vessel is properly equipped with the latest offshore technologies for navigation and cargo delivery operations. Examples include computer applications, networks and servers, enterprise systems, global positioning systems, and data centers. A critical analysis of the carriers’ obligations to exercise due diligence in preventing or mitigating cyber-attacks is also conducted in this paper. It is hoped that the present study will offer original and crucial insights to policymakers, regulators, carriers, cargo interests, and insurance underwriters closely involved in dispute prevention and resolution arising from cybersecurity liabilities.Keywords: seaworthiness, cybersecurity, liabilities, risks, maritime, transport
Procedia PDF Downloads 134425 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations
Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri
Abstract:
Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size
Procedia PDF Downloads 225424 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network
Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar
Abstract:
Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.Keywords: Bitcoin network, propagation delay, clustering, scalability
Procedia PDF Downloads 115423 Boko Haram Insurrection and Religious Revolt in Nigeria: An Impact Assessment-{2009-2015}
Authors: Edwin Dankano
Abstract:
Evident by incessant and sporadic attacks on Nigerians poise a serious threat to the unity of Nigeria, and secondly, the single biggest security nightmare to confront Nigeria since after amalgamation of the Southern and Northern protectorates by the British colonialist in 1914 is “Boko Haram” a terrorist organization also known as “Jama’atul Ahli Sunnah Lidda’wati wal Jihad”, or “people committed to the propagation of the Prophet’s teachings and jihad”. The sect also upholds an ideology translated as “Western Education is forbidden”, or rejection of Western civilization and institutions. By some estimates, more than 5,500 people were killed in Boko Haram attacks in 2014, and Boko Haram attacks have already claimed hundreds of lives and territories {caliphates}in early 2015. In total, the group may have killed more than 10,000 people since its emergence in the early 2000s. More than 1 million Nigerians have been displaced internally by the violence, and Nigerian refugee figures in neighboring countries continue to rise. This paper is predicated on secondary sources of data and anchored on the Huntington’s theory of clash of civilization. As such, the paper argued that the rise of Boko Haram with its violent disposition against Western values is a counter response to Western civilization that is fast eclipsing other civilizations. The paper posits that the Boko Haram insurrection going by its teachings, and destruction of churches is a validation of the propagation of the sect as a religious revolt which has resulted in dire humanitarian situation in Adamawa, Borno, Yobe, Bauchi, and Gombe states all in north eastern Nigeria as evident in human casualties, human right abuses, population displacement, refugee debacle, livelihood crisis, and public insecurity. The paper submits that the Nigerian state should muster the needed political will in terms of a viable anti-terrorism measures and build strong legitimate institutions that can adequately curb the menace of corruption that has engulfed the military hierarchy, respond proactively to the challenge of terrorism in Nigeria and should embrace a strategic paradigm shift from anti-terrorism to counter-terrorism as a strategy for containing the crisis that today threatens the secular status of Nigeria.Keywords: Boko Haram, civilization, fundamentalism, Islam, religion revolt, terror
Procedia PDF Downloads 398