Search results for: PDF to story feature
1908 Narrative Point of View in Nature Documentary Films: A Study of The Cove (2009), Tale of a Forest (2012), and Before the Flood (2016)
Authors: Sakshi Yadav, Sushila Shekhawat
Abstract:
This study addresses different types of points of view as seen in nature documentary films with the help of three eco documentaries, and it would be significant in understanding the role of the narrative point of view as a tool for showing and telling in documentaries. Narrative analysis of a film forms an essential aspect of the discourse of scholarship in film studies. Narration is the chain of events occurring in time and space. The notion of narrative provides the idea of coherence and wholeness to the story. There are various components that the narration carries, one of which is the perspective or point of view. The narrator plays the role of a mediator between the film and the audience; thus, his perspective influences the way the audience interprets the film. Feature films have been analyzed through narrative points of view; however, this research intends to conduct it from the angle of a nature documentary film. The study will examine narrative viewpoints unique to nature documentary films using three ecological documentary films-The Cove (2009), Tale of a forest (2012), and Before the flood (2016). This research will apply the framework of narrative theory and will investigate the impact of the different types of narrative points of view, as each portrays the human-nature relationship from a different standpoint, and it will also study the effect that the narrative point of view has on the mode of these eco documentaries.Keywords: ecodocumentary, narrative, human-nature relationship, point of view
Procedia PDF Downloads 911907 Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard
Authors: Byl Farney Cunha Junior
Abstract:
In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response.Keywords: finite element method, synthetic wind, tall buildings, shear building
Procedia PDF Downloads 2731906 Newspaper Reportage and Framing of President Muhammadu Buhari’s Anti-Corruption Campaign in Nigeria
Authors: Diane Ezeh-Aruah
Abstract:
This study examined newspaper coverage of President Muhammadu Buhar’s anti-corruption crusade, a case study of Guardian, Nation, Sun and Vanguard newspapers. It assessed the frequency of coverage given to President Buhari’s war against corruption, the prominence of coverage, the angles/framing of topics and the direction of the news stories. The determinants of the prominence of coverage were page placement, length of the story, illustrations and story types. The author made use of agenda setting and framing theories. The research was carried through the method of survey, by distribution of copies of the questionnaire. The result of this study showed that the media gave adequate coverage of President Buhari’s anti-corruption war, even though the reports were not many in the early stages of the law enactment, but the coverages lacked prominence as most of the major stories were not given front page coverage; they lacked pictorial illustrations and not exhaustive enough to be impactful. Newspaper organizations are therefore encouraged to include humanistic angles in their corruption stories rather than focus highly on political angles. They should adopt the elements of investigative and interpretative journalism in their coverage of corruption news.Keywords: newspaper, coverage, president Muhammadu Buhari, anti-corruption campaign
Procedia PDF Downloads 1881905 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 2621904 The Relationship between Human Pose and Intention to Fire a Handgun
Authors: Joshua van Staden, Dane Brown, Karen Bradshaw
Abstract:
Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.Keywords: feature engineering, human pose, machine learning, security
Procedia PDF Downloads 931903 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 1131902 Classifying Facial Expressions Based on a Motion Local Appearance Approach
Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez
Abstract:
This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach
Procedia PDF Downloads 4141901 Music Genre Classification Based on Non-Negative Matrix Factorization Features
Authors: Soyon Kim, Edward Kim
Abstract:
In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)
Procedia PDF Downloads 3031900 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 1211899 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 2351898 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients
Procedia PDF Downloads 2601897 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3161896 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor
Procedia PDF Downloads 4341895 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4561894 The Acquisition of Temporality in Italian Child Language: Case Study of Child Frog Story Narratives
Authors: Gabriella Notarianni Burk
Abstract:
The present study investigates the Aspect Hypothesis (AH) in Italian child language in the production of frog story narratives from the CHILDES database. The AH is based on the assumption that children initially encode aspectual and lexical distinctions rather than temporal relations. Children from a variety of first languages have been shown to mark past initially with achievements and accomplishments (telic predicates) and in later stages with states and activities (atelic predicates). Aspectual distinctions in Romance languages are obligatorily and overtly encoded in the inflectional morphology. In Italian the perfective viewpoint is realized by the passato prossimo, which expresses a temporal and aspectual meaning of pastness and perfectivity, whereas the imperfective viewpoint in the past tense is realized by the imperfetto. The aim of this study is to assess the role of lexical aspect in the acquisition of tense and aspect morphology and to understand if Italian children’s mapping of aspectual and temporal distinctions follows consistent developmental patterns across languages. The research methodology aligns with the cross-linguistic designs, tasks and coding procedures previously developed in the frog story literature. Results from two-factor ANOVA show that Italian children (age range: 4-6) exhibited a statistically significant distinction between foregrounded perfective and backgrounded imperfective marking. However, a closer examination of the sixty narratives reveals an idiosyncratic production pattern for Italian children, whereby the marking of imperfetto deviates from the tenets of AH and emerges as deictic tense to entail completed and bounded events in foreground clauses. Instances of ‘perfective’ uses of imperfetto were predominantly found in the four-year old narratives (25%). Furthermore, the analysis of the perfective marking suggests that morphological articulation and diatopic variation may influence the child production of formal linguistic devices in discourse.Keywords: actionality, aspect, grounding, temporal reference
Procedia PDF Downloads 2411893 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 1371892 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1011891 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach
Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh
Abstract:
Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system. This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition
Procedia PDF Downloads 3831890 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5181889 Affordable and Sustainable Housing Construction: Case Studies
Authors: Tony Rizk
Abstract:
Recent material advances and cost efficiencies are transforming the housing industry away from traditional lumber and gypsum material to alternate fiberboard material that is workable and resistant to fire, mold, and pest infestation. The use of these materials may add to the initial cost of construction. However, the life cycle (cradle to grave) cost of houses using these construction materials and methods are lower than the life cycle costs using traditional housing construction materials and methods. This paper will present four (4) case studies of sustainable house projects. Each project was designed and constructed using earthen-based, sustainable fiberboard material that is resistant to fire, mold, and infestation and fabricated at a very low material calorific value. These house projects have a living space ranging from 625 sq. ft. for an accessory dwelling unit and up to 3,200 sq. ft. 1-story and 2-story homes. For each case study, we will present the house engineering design and construction method, the initial construction costs, a summary of the life cycle costs, and a comparison to the life cycle cost of traditional housing available in the literature.Keywords: residential housing, sustainable housing, life cycle cost, fire resistance, mold, infestation resistance
Procedia PDF Downloads 1271888 Examining Litter Distributions in Lethbridge, Alberta, Canada, Using Citizen Science and GIS Methods: OpenLitterMap App and Story Maps
Authors: Tali Neta
Abstract:
Humans’ impact on the environment has been incredibly brutal, with enormous plastic- and other pollutants (e.g., cigarette buds, paper cups, tires) worldwide. On land, litter costs taxpayers a fortune. Most of the litter pollution comes from the land, yet it is one of the greatest hazards to marine environments. Due to spatial and temporal limitations, previous litter data covered very small areas. Currently, smartphones can be used to obtain information on various pollutants (through citizen science), and they can greatly assist in acknowledging and mitigating the environmental impact of litter. Litter app data, such as the Litterati, are available for study through a global map only; these data are not available for download, and it is not clear whether irrelevant hashtags have been eliminated. Instagram and Twitter open-source geospatial data are available for download; however, these are considered inaccurate, computationally challenging, and impossible to quantify. Therefore, the resulting data are of poor quality. Other downloadable geospatial data (e.g., Marine Debris Tracker8 and Clean Swell10) are focused on marine- rather than terrestrial litter. Therefore, accurate terrestrial geospatial documentation of litter distribution is needed to improve environmental awareness. The current research employed citizen science to examine litter distribution in Lethbridge, Alberta, Canada, using the OpenLitterMap (OLM) app. The OLM app is an application used to track litter worldwide, and it can mark litter locations through photo georeferencing, which can be presented through GIS-designed maps. The OLM app provides open-source data that can be downloaded. It also offers information on various litter types and “hot-spots” areas where litter accumulates. In this study, Lethbridge College students collected litter data with the OLM app. The students produced GIS Story Maps (interactive web GIS illustrations) and presented these to school children to improve awareness of litter's impact on environmental health. Preliminary results indicate that towards the Lethbridge Coulees’ (valleys) East edges, the amount of litter significantly increased due to shrubs’ presence, that acted as litter catches. As wind generally travels from west to east in Lethbridge, litter in West-Lethbridge often finds its way down in the east part of the coulees. The students’ documented various litter types, while the majority (75%) included plastic and paper food packaging. The students also found metal wires, broken glass, plastic bottles, golf balls, and tires. Presentations of the Story Maps to school children had a significant impact, as the children voluntarily collected litter during school recess, and they were looking into solutions to reduce litter. Further litter distribution documentation through Citizen Science is needed to improve public awareness. Additionally, future research will be focused on Drone imagery of highly concentrated litter areas. Finally, a time series analysis of litter distribution will help us determine whether public education through Citizen Science and Story Maps can assist in reducing litter and reaching a cleaner and healthier environment.Keywords: citizen science, litter pollution, Open Litter Map, GIS Story Map
Procedia PDF Downloads 801887 Political Discourse Used in the TV Talk Shows of Pakistani Media
Authors: Hafiz Sajjad Hussain, Asad Razzaq
Abstract:
The study aims to explore the relationship between application of speech and discourse used by the political workers and their leaders for maintaining authoritative approach and dialog power. The representation of these relationships between ideology and language in the analysis of discourse and spoken text following Van Dijk Socio-Cognitive model. Media and political leaders are two pillars of a state and their role is so important for development and effects on the society. Media has become an industry in the recent years in the globe, and especially, the private sector developed a lot in the last decade in Pakistan. Media is the easiest way of communication with the large community in a short time and used discourse independently. The prime time of the news channels in Pakistan presents the political programs on most favorite story or incident of the day. The current program broadcasted by a private channel ARY News July 6, 2014 covered the most top story of the day. The son of Ex. CJ Arslan Iftikhar moves an application to Election Commission of Pakistan about the daughter of the most popular political leader and chairman PTI Imran Khan. This movement turns the whole scenario of the political parties and media got a hot issue form discussion. This study also shows that the ideology and meanings which are presented by the TV channels not always obvious for readers.Keywords: electronic media, political discourse, ideology of media, power, authoritative approach
Procedia PDF Downloads 5291886 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.Keywords: altitude estimation, drone, image processing, trajectory planning
Procedia PDF Downloads 1131885 The Post-Confucian Korea: Destroying Hierarchies in Kim Yong Ha's "Oppa Came Back"
Authors: Steven D. Capener
Abstract:
The 1997 Asian financial crisis was a watershed event in Korea as it necessitated changes that begin an unravelling of many of the norms and traditions that had served to underpin society. Divorce skyrocketed; the era of lifetime employment was over; women came out the home to become, in many cases, the main breadwinners; competitive forces were exacerbated; and traditional sources of authority began to crumble. All of these changes weekend the power to structure human relations of the Confucian Three Bonds and Five Relationships (삼강오륜). Since then, this “de-confucianization” has only become more pronounced with women increasingly refusing to marry, partly in protest to what they perceive as entrenched gender inequality, married couples eschewing childbirth resulting in the lowest birthrate in the world, and diminishing inheritances eroding the traditionally strong sense of filial piety (효) of children toward parents. The result of all this can be seen in the continued weakening or outright crumbling of the hierarchies codified in the Three Bonds and Five Relationship, which have served as a social template in Korea for centuries. In his 2004 work “Oppa Came Back,” writer Kim Yong Ha depicts what he apparently sees as the “post-Confucian” family in a wickedly funny portrayal of what Korean society could look like if traditional bulwarks of prescriptive values suddenly collapse and are not replaced with tenable alternatives. In the short story, Kim subverts all the traditional hierarchies while leaving the desire to dominate these hierarchies intact. This produces the picture of a Korean family governed by the new values of money and physical power. After lying out what can be identified as major cultural changes in what could be called “traditional” society,” the article uses a close reading of Kim’s story for its implications regarding a possible new, dysfunctional version of Korean society. It seems apparent that Kim’s story is a cautionary tale of the pitfalls that lie athwart the late-modern Korean landscape. These changes have important implications in the areas of education and socio-political philosophy. The conclusion focuses on possible alternatives to this post-Confucian conundrum.Keywords: post-confucian, three bonds and five relationships, traditional society, hierarchies
Procedia PDF Downloads 711884 Exploring Coping Mechanisms in Sudanese and Congolese Refugee Women Through Life Story Interviews
Authors: Gwyneth Bernier
Abstract:
An authoritative literature review of peer-reviewed journals and edited books on East African refugees' coping strategies identifies the four most common coping skills among this group as the following: (1) relying on faith, religion, or another belief system, (2) turning to communities or social supports, (3) cognitive reframing--in other words, finding meaning in one's traumas or hardships--and (4) finding hope for the future, especially through education. However, this review recognizes that there are gaps in knowledge in this field and that the validity of these general findings must be further investigated in East African refugees who are women, have not been resettled in Western countries, and belong to specific nationality groups. This review also suggests studies that build on the current body of research begin to use qualitative methods of data collection and analysis. This paper aims to bridge part of that gap in understanding using a qualitative methodology. Specifically, it provides a more holistic view of East African refugees' psychological coping mechanisms through its analysis of trends observed across life story interviews from two participant groups: Sudanese refugee women in Cairo's informal settlements, Egypt and Congolese refugee women in Rwanda's Mahama camp.Keywords: Congolese refugees, coping mechanisms, refugee women, Sudanese refugees
Procedia PDF Downloads 1851883 From Script to Film: The Fading Voice of the Screenwriter
Authors: Ana Sofia Torres Pereira
Abstract:
On January 15th 2015, Peter Bart, editor in chief of Variety Magazine, published an article in the aforementioned magazine posing the following question “Are screenwriters becoming obsolete in Hollywood?” Is Hollywood loosing its interest in well plotted, well written scripts crafted by professionals? That screenwriters have been undervalued, forgotten and left behind since the begging of film, is a well-known fact, but ate they now at the brink of extinction? If fiction films are about people, stories, so, simply put, all about the script, what does it mean to say that the screenwriter is becoming obsolete? What will be the consequences of the possible death of the screenwriter for the cinema world? All of these questions lead us to an ultimate one: What is the true importance of a screenwriter? What can a screenwriter do that a director, for instance, can’t? How should a script be written and read in order not to become obsolete? And what about those countries, like Portugal, for example, in which the figure of the screenwriter is yet to be heard and known? How can screenwriters find their voice in a world driven by the tyrannical voice of the Director? In a demanding cinema world where the Director is considered the author of a film, it’s important to know where we can find the voice of the screenwriter, the true language of the screenplay and the importance this voice and specific language might have for the future of story telling and of film. In a paper that admittedly poses more questions than answers, I will try to unveil the importance a screenplay might have in Hollywood, in Portugal and in the cinema and communication world in general.Keywords: cinema, communication, director, language, screenplay, screenwriting, story
Procedia PDF Downloads 3191882 Colonizing the Colonizers: Layers of Subjectification in the Russian Caucasus
Authors: Aaron Derner
Abstract:
Unlike the histories of France, the UK, or even Spain, the Russian colonial past often dissolves before the seemingly more salient Cold War figurations or Soviet dissolution. The obvious explanation behind Caucasian states’ roles—that of Russian-propped governments obeying the whims of their patron—is but the latest instance of such oversight. Where the results of colonial social and cultural interactions are indelibly stamped across France, Algeria, and every other former (and current) French holding, so to are the Muscovite and Russian colonial ambitions embedded within the modern politics and cultures of both Russia and the Caucasus. Russian colonial artefacts are enhanced and perhaps granted an additional social explanatory edge over those of the ‘typical’ colonizers, by the cyclical adoration for and noisy rejection of European cultural markers over the centuries, along with the somewhat unusual composition of the Cossacks: Russia’s main agents of colonialization within the Caucasian frontier. The story of Russia and Chechnya, of all the Caucasus, is of the manufacture of social and individual identity through “modes of subjectification” inherent within the region’s colonial history and driven by the triangular interactions between three main groups: the Cossacks, the Caucasian Mountain Tribes, and the Russian Metropol. Together, interactions between these social groups worked to shape and transform the lifestyles and institutional pathologies that constitute the Russian and Chechen states and the politics between them. At the core of this (Western) state-building is the simultaneous and seemingly contradictory desire to be more Western and emulate Western cultural and political practices while also desperately grasping for a uniquely Russian identity. This sits somewhat ironically against the backdrop that Russia hosted a frontier-based settler society and had established that distinctly European feature of settler colonialism early in its history—arguably establishing a claim to being the most “colonial” of the colonial powers. There is no doubt that these forces worked to shape contemporary Russian political and social identity—apparent in the mythic popularity of the Cossack in Russian literature, politics, and academic discourse. What needs to be expanded from the current narrative, however, is that beyond the Cossack identity’s attractiveness on the grounds of its tones of freedom and resistance to unjust authority, the identity is rooted in the imperial ambitions and colonial experiences of the Russian state, and is, therefore, a direct marker of domination and subjectification. Adding an unusual dimension to this not-uncommon cultural progression, the Russian state needed to colonize both the Caucases and the Russian Cossacks, appropriating them in much the same way they appropriated the Circassian mountain tribes. The focus of this paper is not to tell yet another story of how one culture entered an area to overpower another but how a ‘powerful,’ ‘modern,’ ‘Western(ish)’ culture was profoundly and continually changed through its contact with a group of tribal ‘savages’ and ‘braves.’Keywords: Russia, chechnya, subjectification, caucasus, cossacks, Ukraine
Procedia PDF Downloads 781881 Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures
Authors: Minjung Kim, Hyunkoo Kang, Jinkoo Kim
Abstract:
In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm.Keywords: seismic retrofit, slit dampers, genetic algorithm, jacketing, capacity spectrum method
Procedia PDF Downloads 2761880 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3631879 Layer-Level Feature Aggregation Network for Effective Semantic Segmentation of Fine-Resolution Remote Sensing Images
Authors: Wambugu Naftaly, Ruisheng Wang, Zhijun Wang
Abstract:
Models based on convolutional neural networks (CNNs), in conjunction with Transformer, have excelled in semantic segmentation, a fundamental task for intelligent Earth observation using remote sensing (RS) imagery. Nonetheless, tokenization in the Transformer model undermines object structures and neglects inner-patch local information, whereas CNNs are unable to simulate global semantics due to limitations inherent in their convolutional local properties. The integration of the two methodologies facilitates effective global-local feature aggregation and interactions, potentially enhancing segmentation results. Inspired by the merits of CNNs and Transformers, we introduce a layer-level feature aggregation network (LLFA-Net) to address semantic segmentation of fine-resolution remote sensing (FRRS) images for land cover classification. The simple yet efficient system employs a transposed unit that hierarchically utilizes dense high-level semantics and sufficient spatial information from various encoder layers through a layer-level feature aggregation module (LLFAM) and models global contexts using structured Transformer blocks. Furthermore, the decoder aggregates resultant features to generate rich semantic representation. Extensive experiments on two public land cover datasets demonstrate that our proposed framework exhibits competitive performance relative to the most recent frameworks in semantic segmentation.Keywords: land cover mapping, semantic segmentation, remote sensing, vision transformer networks, deep learning
Procedia PDF Downloads 11