Search results for: NRAS Gene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1509

Search results for: NRAS Gene

1269 Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50

Authors: Kah Yan How, Peh Fern Ong, Keang Peng Song

Abstract:

Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis.

Keywords: Porphyromonas gingivalis, periodontal diseases, HmuX, protein characterization

Procedia PDF Downloads 220
1268 Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells

Authors: Vanja Misic, Mohamed El-Mogy, Yousef Haj-Ahmad

Abstract:

Endonuclease G (EndoG) is a well conserved mitochondrio-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from non-viral DNA vectors in gene therapy efforts.

Keywords: EndoG, silencing, exogenous DNA stability, HeLa cells

Procedia PDF Downloads 459
1267 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 615
1266 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies

Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari

Abstract:

Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.

Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy

Procedia PDF Downloads 172
1265 Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice

Authors: Meiling Yu, Nadia Rouatbi, Khuloud T. Al-Jamal

Abstract:

Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology.

Keywords: CRISPR, nanoparticles, brain diseases, administration routes

Procedia PDF Downloads 99
1264 Evolutionary Genomic Analysis of Adaptation Genomics

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: adaptation, animals, evolution, genomics

Procedia PDF Downloads 428
1263 Al₂O₃ Nano-Particles Impact on Pseudomonas Putida Gene Expression: Implications for Environmental Risk

Authors: Nina Doskocz, Katarzyna Affek, Magdalena Matczuk, Monika Załęska-Radziwiłł

Abstract:

Wastewater treatment is a critical environmental issue, especially in the face of increasing urbanization and industrialization. One of the emerging issues related to wastewater is the presence of nanoparticles (NPs) - tiny particles with dimensions measured in nanometers. These nanoparticles are widely used in various industries, including medicine, electronics, and consumer products. With technological advances, NPs are increasingly finding their way into water and wastewater systems, posing new environmental challenges that require urgent research and regulation. Therefore, research on the impact of nanoparticles on wastewater treatment processes is critical to protect environmental health and ensure sustainable development in the face of advancing nanotechnology. Traditional ecotoxicological tests are often inadequate for routine analysis as they do not provide insight into the mechanisms of toxicity of these compounds. The development of (geno)toxicity biomarkers for nanoparticles will greatly aid in the rapid assessment and prediction of the effects of current and emerging nanomaterials on various organisms. However, despite growing interest in gene expression responses to nanoparticle-induced stress, the toxic mechanisms of action and defense responses against nanoparticle toxicity remain poorly understood. The aim of our research was to investigate the expression of several molecular biomarkers related to essential cellular functions - such as oxidative stress, xenobiotic detoxification, and mitochondrial electron transport - in Pseudomonas putida in response to Al₂O₃ nanoparticles found in wastewater, both before and after biological treatment, as well as in their native form. Real-time PCR (qPCR) was used to assess gene expression changes after 1 hour and 16 hours of exposure to Al₂O₃ NPs and wastewater containing these nanoparticles, both before and after biological treatment. In addition, gene expression measurements were performed on P. putida in the presence of bulk Al₂O₃ (pristine and in wastewater). The results showed increased expression of ahpC, katE and ctaD genes, indicating oxidative stress, increased detoxification capacity and impaired mitochondrial function. Both untreated and treated wastewater containing nanoparticles caused significant changes in gene expression, demonstrating the persistent bioactivity and potential toxicity of these nanoparticles. Nanoparticles exhibited greater reactivity and bioavailability compared to their bulk counterparts.

Keywords: nanoparticles, wastewater, gene expression, qPCR

Procedia PDF Downloads 16
1262 Association of Non Synonymous SNP in DC-SIGN Receptor Gene with Tuberculosis (Tb)

Authors: Saima Suleman, Kalsoom Sughra, Naeem Mahmood Ashraf

Abstract:

Mycobacterium tuberculosis is a communicable chronic illness. This disease is being highly focused by researchers as it is present approximately in one third of world population either in active or latent form. The genetic makeup of a person plays an important part in producing immunity against disease. And one important factor association is single nucleotide polymorphism of relevant gene. In this study, we have studied association between single nucleotide polymorphism of CD-209 gene (encode DC-SIGN receptor) and patients of tuberculosis. Dry lab (in silico) and wet lab (RFLP) analysis have been carried out. GWAS catalogue and GEO database have been searched to find out previous association data. No association study has been found related to CD-209 nsSNPs but role of CD-209 in pulmonary tuberculosis have been addressed in GEO database.Therefore, CD-209 has been selected for this study. Different databases like ENSEMBLE and 1000 Genome Project has been used to retrieve SNP data in form of VCF file which is further submitted to different software to sort SNPs into benign and deleterious. Selected SNPs are further annotated by using 3-D modeling techniques using I-TASSER online software. Furthermore, selected nsSNPs were checked in Gujrat and Faisalabad population through RFLP analysis. In this study population two SNPs are found to be associated with tuberculosis while one nsSNP is not found to be associated with the disease.

Keywords: association, CD209, DC-SIGN, tuberculosis

Procedia PDF Downloads 306
1261 Identification of Anaplasma Species in Sheep of Khouzestan Province by PCR

Authors: Masoud Soltanialvar, Ali Bagherpour

Abstract:

The aim of this study was to determinate the variety of Anaplasma species among sheep of khouzestan province, Iran. From April 2013 to June 2013, a total of 200 blood samples were collected via the jugular vein from healthy sheep (100), randomly. The extracted DNA from blood cells were amplified by Anaplasma-all primers, which amplify an approximately 1468bp DNA fragment from region of 16S rRNA gene from various members of the genus Anaplasma. For raising the test sensivity, the PCR products were amplified with the primers, which were designed from the region flanked by the first primers. The amplified nested PCR product had an expected PCR product with 345 nucleotides in length. In 100 sheep blood samples, 7 samples were Anaplasma spp. positive by first PCR and nested PCR. The results showed that 2 of total 100 blood samples (2%) were A.phagocytophilum positive by specific nested PCR based on 16S rRNA gene. The extracted DNA from positive Anaplasma spp. samples were amplified by Anaplasma ovis specific primers, which amplify an approximately 866bp DNA fragment from region of msp4 gene. 5 out of 100 sheep blood samples (5%) were positive for Anaplasma ovis. This study is the first molecular detection of A. ovis and A.phagocytophilum from sheep in Iran.

Keywords: Iran, anaplasma species, sheep, A. ovis, A. phagocytophilum, PCR

Procedia PDF Downloads 523
1260 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 85
1259 Genome-Wide Significant SNPs Proximal to Nicotinic Receptor Genes Impact Cognition in Schizophrenia

Authors: Mohammad Ahangari

Abstract:

Schizophrenia is a psychiatric disorder with symptoms that include cognitive deficits and nicotine has been suggested to have an effect on cognition. In recent years, the advents of Genome-Wide Association Studies(GWAS) has evolved our understanding about the genetic causes of complex disorders such as schizophrenia and studying the role of genome-wide significant genes could potentially lead to the development of new therapeutic agents for treatment of cognitive deficits in schizophrenia. The current study identified six Single Nucleotide Polymorphisms (SNP) from schizophrenia and smoking GWAS that are located on or in close proximity to the nicotinic receptor gene cluster (CHRN) and studied their association with cognition in an Irish sample of 1297 cases and controls using linear regression analysis. Further on, the interaction between CHRN gene cluster and Dopamine receptor D2 gene (DRD2) during working memory was investigated. The effect of these polymorphisms on nicotinic and dopaminergic neurotransmission, which is disrupted in schizophrenia, have been characterized in terms of their effects on memory, attention, social cognition and IQ as measured by a neuropsychological test battery and significant effects in two polymorphisms were found across global IQ domain of the test battery.

Keywords: cognition, dopamine, GWAS, nicotine, schizophrenia, SNPs

Procedia PDF Downloads 344
1258 Fam111b Gene Dysregulation Contributes to the Malignancy in Fibrosarcoma, Poor Clinical Outcomes in Poiktmp and a Low-cost Method for Its Mutation Screening

Authors: Cenza Rhoda, Falone Sunda, Elvis Kidzeru, Nonhlanhla P. Khumalo, Afolake Arowolo

Abstract:

Introduction: The human FAM111B gene mutations are associated with POIKTMP, a rare multi-organ fibrosing disease. Recent studies also reported the overexpression of FAM111B in specific cancers. However, the role of FAM111B in these pathologies, particularly fibrosarcoma, remains unknown. Materials and Methods: FAM111B RNA expression in some cancer cell lines was assessed in silico and validated in vitro in these cell lines and skin fibroblasts derived from the South African family member affected by POIKTMP with the heterozygous FAM111B gene mutation: NM_198947.4: c.1861T>G (p. Tyr621Asp or Y621D) by qPCR and western blot. The cellular function of FAM111B was also studied in HT1080 using various cell-based functional assays and a simple and cost-effective PCR-RFLP method for genotyping/screening FAM111B gene mutations described. Results: Expression studies showed upregulated FAM111B mRNA and protein in the cancer cells. High FAM111B expression with robust nuclear localization occurred in HT1080. Additionally, expression data and cell-based assays indicated that FAM111B led to the upregulation of cell migration and decreased cell apoptosis and cell proliferation modulation. FAM111B Y621D mutation showed similar effects on cell migration but minimal impact on cell apoptosis. FAM111B mRNA and protein expression were markedly downregulated (p ≤ 0.05) in the patient's skin-derived fibroblasts. Lastly, the PCR-RFLP method successfully genotyped FAM111B Y621D gene mutation. Discussion: FAM111B is a cancer-associated nuclear protein: Its modulation by mutations may enhance cell migration and proliferation and decrease apoptosis, as seen in cancers and POIKTMP/fibrosis, thus representing a viable therapeutic target in these disorders. Furthermore, the PCR-RFLP method could prove a valuable tool for FAM111B mutation validation or screening in resource-constrained laboratories.

Keywords: FAM111B, POIKTMP, cancer, fibrosis, PCR-RFLP

Procedia PDF Downloads 119
1257 Mutations in rpoB, katG and inhA Genes: The Association with Resistance to Rifampicin and Isoniazid in Egyptian Mycobacterium tuberculosis Clinical Isolates

Authors: Ayman K. El Essawy, Amal M. Hosny, Hala M. Abu Shady

Abstract:

The rapid detection of TB and drug resistance, both optimizes treatment and improves outcomes. In the current study, respiratory specimens were collected from 155 patients. Conventional susceptibility testing and MIC determination were performed for rifampicin (RIF) and isoniazid (INH). Genotype MTBDRplus assay, which is a molecular genetic assay based on the DNA-STRIP technology and specific gene sequencing with primers for rpoB, KatG, and mab-inhA genes were used to detect mutations associated with resistance to rifampicin and isoniazid. In comparison to other categories, most of rifampicin resistant (61.5%) and isoniazid resistant isolates (47.1%) were from patients relapsed in treatment. The genotypic profile (using Genotype MTBDRplus assay) of multi-drug resistant (MDR) isolates showed missing of katG wild type 1 (WT1) band and appearance of mutation band katG MUT2. For isoniazid mono-resistant isolates, 80% showed katG MUT1, 20% showed katG MUT1, and inhA MUT1, 20% showed only inhA MUT1. Accordingly, 100% of isoniazid resistant strains were detected by this assay. Out of 17 resistant strains, 16 had mutation bands for katG distinguished high resistance to isoniazid. The assay could clearly detect rifampicin resistance among 66.7% of MDR isolates that showed mutation band rpoB MUT3 while 33.3% of them were considered as unknown. One mono-resistant rifampicin isolate did not show rifampicin mutation bands by Genotype MTBDRplus assay, but it showed an unexpected mutation in Codon 531 of rpoB by DNA sequence analysis. Rifampicin resistance in this strain could be associated with a mutation in codon 531 of rpoB (based on molecular sequencing), and Genotype MTBDRplus assay could not detect the associated mutation. If the results of Genotype MTBDRplus assay and sequencing were combined, this strain shows hetero-resistance pattern. Gene sequencing of eight selected isolates, previously tested by Genotype MTBDRplus assay, could detect resistance mutations mainly in codon 315 (katG gene), position -15 in inhA promotes gene for isoniazid resistance and codon 531 (rpoB gene) for rifampicin resistance. Genotyping techniques allow distinguishing between recurrent cases of reinfection or reactivation and supports epidemiological studies.

Keywords: M. tuberculosis, rpoB, KatG, inhA, genotype MTBDRplus

Procedia PDF Downloads 163
1256 Pharmacogenetic Analysis of Inter-Ethnic Variability in the Uptake Transporter SLCO1B1 Gene in Colombian, Mozambican, and Portuguese Populations

Authors: Mulata Haile Nega, Derebew Fikadu Berhe, Vera Ribeiro Marques

Abstract:

There is no epidemiologic data on this gene polymorphism in several countries. Therefore, this study aimed to assess the genotype and allele frequencies of the gene variant in three countries. This study involved healthy individuals from Colombia, Mozambique, and Portugal. Genomic DNA was isolated from blood samples using the Qiamp DNA Extraction Kit (Qiagen). The isolated DNA was genotyped using Polymerase Chain Reaction (PCR) - Restriction Fragment Length Polymorphism. Microstat and GraphPad quick cal software were used for the Chi-square test and evaluation of Hardy-Weinberg equilibrium, respectively. A total of 181 individuals’ blood sample was analyzed. Overall, TT (74.0%) genotype was the highest, and CC (7.8%) was the lowest. Country wise genotypic frequencies were Colombia 47(70.2%) TT, 12(17.9%) TC and 8(11.9%) CC; Mozambique 47(88.7%) TT, 5(9.4%) TC, and 1(1.9%) CC; and Portugal 40(65.6%) TT, 16(26.2%) TC, and 5(8.2%) CC. The reference (T) allele was highest among Mozambicans (93.4%) compared to Colombians (79.1%) and Portuguese (78.7%). Mozambicans showed statistically significant genotypic and allelic frequency differences compared to Colombians (p<0.01) and Portuguese (p <0.01). Overall and country-wise, the CC genotype was less frequent and relatively high for Colombians and Portuguese populations. This finding may imply statins risk-benefit variability associated with CC genotype among these populations that needs further understanding.

Keywords: c.521T>C, polymorphism, SLCO1B1, SNP, statins

Procedia PDF Downloads 131
1255 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis

Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.

Abstract:

Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.

Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree

Procedia PDF Downloads 138
1254 Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment

Authors: Rasha Ahmadi

Abstract:

Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this.

Keywords: Glioblastoma, Cancer Stem Cells, Biomarker Discovery, Gene Expression Profiles, Bioinformatics Analysis, Tumor Microenvironment

Procedia PDF Downloads 143
1253 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 453
1252 Angiotensin Converting Enzyme Gene Polymorphism Studies: A Case-Control Study

Authors: Salina Y. Saddick

Abstract:

Mild gestational hyperglycemia (MGH) is a very common complication of pregnancy that is characterized by intolerance to glucose. The association of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism to MGH has been previously reported. In this study, we evaluated the association between ACE polymorphism and the risk of MGH in a Saudi population. We conducted a case-control study in a population of 100 MGH patients and 100 control subjects. ACE gene polymorphism was analyzed by the novel approach of tetraprimer amplification refractory mutation system (ARMS)-polymerase chain reaction (PCR). The frequency of ACE polymorphism was not associated with either alleles or genotypes in MGH patients. Glucose concentration was found to be significantly associated with the MGH group. Our study suggests that ACE genotypes were not associated with ACE polymorphism in a Saudi population.

Keywords: MGH, ACE, insertion polymorphism, deletion polymorphism

Procedia PDF Downloads 317
1251 Genomics of Aquatic Adaptation

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of selected marine animal species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: comparative genomics, adaptive evolution, bioinformatics, phylogenetics, genome mining

Procedia PDF Downloads 531
1250 MMP-2 Gene Polymorphism and Its Influence on Serum MMP-2 Levels in Pre-Eclampsia in Indian Population

Authors: Ankush Kalra, Mirza Masroor, Usha Manaktala, B. C. Koner, T. K. Mishra

Abstract:

Introduction: Pre-eclampsia affects 3-5% of pregnancies worldwide and increases maternal-fetal morbidity and mortality. Reduced placental perfusion induces the release of biomolecules by the placenta into maternal circulation causing endothelial dysfunction. Zinc dependent matrix metalloproteinase-2 (MMP-2) may be up-regulated and interact with circulating factors of oxidative stress and inflammation to produce endothelial dysfunction in pre-eclampsia. Aim: To study the functional genetic polymorphism of MMP-2 gene (g-1306 C>T) in pre-eclampsia and its effect on serum MMP-2 levels in these patients. Method: Hundred pre-eclampsia patients and hundred age and gestation period matched healthy pregnant women with their consent were recruited in the study. Serum MMP-2 levels in all subjects were estimated using standard ELISA kits. MMP-2 gene (g.- 1306 C>T) SNPs were genotyped using whole blood by ASO-PCR. Result: The pre-eclampsia patients had higher serum levels of MMP-2 compared to the healthy pregnant (p < 0.05). Also the MMP-2 genotype was associated with significant alteration in the serum MMP-2 concentration in these patients (p < 0.05). Conclusion: This study results suggest an association of MMP-2 genetic polymorphism and serum levels of MMP-2 to the path physiology of hypertensive disorder of pregnancy.

Keywords: allele specific oligonucleotide polymerase chain reaction (ASO-PCR), enzyme linked immunosorbent assay (ELISA), matrix metalloproteinase-2 (MMP-2), pre-eclampsia

Procedia PDF Downloads 326
1249 TARF: Web Toolkit for Annotating RNA-Related Genomic Features

Authors: Jialin Ma, Jia Meng

Abstract:

Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.

Keywords: RNA-related genomic features, annotation, visualization, web server

Procedia PDF Downloads 205
1248 Bioinformatics Approach to Support Genetic Research in Autism in Mali

Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind

Abstract:

Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.

Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations

Procedia PDF Downloads 81
1247 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter

Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi

Abstract:

In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.

Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm

Procedia PDF Downloads 385
1246 Biosafety Study of Genetically Modified CEMB Sugarcane on Animals for Glyphosate Tolerance

Authors: Aminah Salim, Idrees Ahmed Nasir, Abdul Qayyum Rao, Muhammad Ali, Muhammad Sohail Anjum, Ayesha Hameed, Bushra Tabassum, Anwar Khan, Arfan Ali, Mariyam Zameer, Tayyab Husnain

Abstract:

Risk assessment of transgenic herbicide tolerant sugarcane having CEMB codon optimized cp4EPSPS gene was done in present study. Fifteen days old chicks taken from K&Ns Company were randomly assorted into four groups with eight chicks in each group namely control chicken group fed with commercial diet, non-transgenic group fed with non-experimental sugarcane and transgenic group fed with transgenic sugarcane with minimum and maximum level. Body weights, biochemical analysis for Urea, alkaline phosphatase, alanine transferase, aspartate transferase, creatinine and bilirubin determination and histological examination of chicks fed with four types of feed was taken at fifteen days interval and no significant difference was observed in body weight biochemical and histological studies of all four groups. Protein isolated from the serum sample was analyzed through dipstick and SDS-PAGE, showing the absence of transgene protein in the serum sample of control and experimental groups. Moreover the amplification of cp4EPSPS gene with gene specific primers of DNA isolated from chicks blood and also from commercial diet was done to determine the presence and mobility of any nucleotide fragment of the transgene in/from feed and no amplification was obtained in feed as well as in blood extracted DNA of any group. Also no mRNA expression of cp4EPSPS gene was obtained in any tissue of four groups of chicks. From the results it is clear that there is no deleterious or harmful effect of the CEMB codon optimized transgenic cp4EPSPS sugarcane on the chicks health.

Keywords: chicks, cp4EPSPS, glyphosate, sugarcane

Procedia PDF Downloads 370
1245 Genetic Determinants of Ovarian Response to Gonadotropin Stimulation in Women Undergoing Assisted Reproductive Treatment

Authors: D. Tohlob, E. Abo Hashem, N. Ghareeb, M. Ghanem, R. Elfarahaty, S. A. Roberts, P. Pemberton, L. Mohiyiddeen, W. G. Newman

Abstract:

Gonadotropin stimulation is used in females undergoing assisted reproductive treatment for ovulation induction, but ovarian response is variable and unpredictable in these women. More effective protocols and individualization of treatment are needed to increase the success rate of IVF/ICSI cycles. We genotyped seven variants reported in previous studies to be associated with ovarian response (number of ova retrieved and total gonadotropin dose) in women undergoing IVF treatment including FSHR variants Asn 680 Ser (c.2039 A > G), Thr 307 Ala (c. 919 > A), -29 G > A, HRG c.610 C > T gene, BMP15 -9 C > G, AMH Ile 49 Ser (c.146 G > T), and AMHR -489A˃G in 118 Egyptian females attending Mansoura Integrated Fertility Center in Egypt, these females were undergoing their first cycle of controlled ovarian hyper stimulation for IVF/ICSI treatment. They were analyzed by TaqMan allelic discrimination assay in Manchester Center of Genomic Medicine. We found no evidence of any significant difference (p value < 0.05) in the number of eggs retrieved or the gonadotropin dose used between individuals in all genotypes except for HRG c.610 C > T gene polymorphism where regression analysis gives a p value of 0.04 with a fewer eggs number in TT genotyped females. These results indicate that these variants do not provide sufficient clinically relevant data to individualize the treatment protocols.

Keywords: controlled ovarian hyperstimulation, gene variants, ovarian response, assisted reproduction

Procedia PDF Downloads 316
1244 Genetic Characteristics of Chicken Anemia Virus Circulating in Northern Vietnam

Authors: Hieu Van Dong, Giang Thi Huong Tran, Giap Van Nguyen, Tung Duy Dao, Vuong Nghia Bui, Le Thi My Huynh, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai

Abstract:

Chicken anemia virus (CAV) has a ubiquitous and worldwide distribution in chicken production. Our group previously reported high seroprevalence of CAV in chickens in northern Vietnam. In the present study, 330 tissue samples collected from commercial and breeder chicken farms in eleven provinces in northern Vietnam were tested for the CAV infection. We found that 157 out of 330 (47.58%) chickens were positive with CAV genes by real-time PCR method. Nine CAV strains obtained from the different location and time were forwarded to the full-length sequence of CAV VP1 gene. Phylogenetic analysis of the Vietnamese CAV vp1 gene indicated that the CAVs circulating in northern Vietnam were divided into three distinct genotypes, II, III, and V, but not clustered with the vaccine strains. Among the three genotypes, genotype III was the major one widely spread in Vietnam, and that included three sub-genotypes, IIIa, IIIb, and IIIc. The Vietnamese CAV strains were closely related to the Chinese, Taiwanese, and USA strains. All the CAV isolates had glutamine at amino acid position 394 in the VP1 gene, suggesting that they might be highly pathogenic strains. One strain was defined to be genotype V, which had not been reported for Vietnamese CAVs. Additional studies are required to further evaluate the pathogenicity of CAV strains circulating in Vietnam.

Keywords: chicken anemia virus, genotype, genetic characteristics, Vietnam

Procedia PDF Downloads 165
1243 Biocultural Biographies and Molecular Memories: A Study of Neuroepigenetics and How Trauma Gets under the Skull

Authors: Elsher Lawson-Boyd

Abstract:

In the wake of the Human Genome Project, the life sciences have undergone some fascinating changes. In particular, conventional beliefs relating to gene expression are being challenged by advances in postgenomic sciences, especially by the field of epigenetics. Epigenetics is the modification of gene expression without changes in the DNA sequence. In other words, epigenetics dictates that gene expression, the process by which the instructions in DNA are converted into products like proteins, is not solely controlled by DNA itself. Unlike gene-centric theories of heredity that characterized much of the 20th Century (where the genes were considered as having almost god-like power to create life), gene expression in epigenetics insists on environmental ‘signals’ or ‘exposures’, a point that radically deviates from gene-centric thinking. Science and Technology Studies (STS) scholars have shown that epigenetic research is having vast implications for the ways in which chronic, non-communicable diseases are conceptualized, treated, and governed. However, to the author’s knowledge, there have not yet been any in-depth sociological engagements with neuroepigenetics that examine how the field is affecting mental health and trauma discourse. In this paper, the author discusses preliminary findings from a doctoral ethnographic study on neuroepigenetics, trauma, and embodiment. Specifically, this study investigates the kinds of causal relations neuroepigenetic researchers are making between experiences of trauma and the development of mental illnesses like complex post-traumatic stress disorder (PTSD), both throughout a human’s lifetime and across generations. Using qualitative interviews and nonparticipant observation, the author focuses on two public-facing research centers based in Melbourne: Florey Institute of Neuroscience and Mental Health (FNMH), and Murdoch Children’s Research Institute (MCRI). Preliminary findings indicate that a great deal of ambiguity characterizes this infant field, particularly when animal-model experiments are employed and the results are translated into human frameworks. Nevertheless, researchers at the FNMH and MCRI strongly suggest that adverse and traumatic life events have a significant effect on gene expression, especially when experienced during early development. Furthermore, they predict that neuroepigenetic research will have substantial implications for the ways in which mental illnesses like complex PTSD are diagnosed and treated. These preliminary findings shed light on why medical and health sociologists have good reason to be chiming in, engaging with and de-black-boxing ideations emerging from postgenomic sciences, as they may indeed have significant effects for vulnerable populations not only in Australia but other developing countries in the Global South.

Keywords: genetics, mental illness, neuroepigenetics, trauma

Procedia PDF Downloads 124
1242 Impact of Ocean Acidification on Gene Expression Dynamics during Development of the Sea Urchin Species Heliocidaris erythrogramma

Authors: Hannah R. Devens, Phillip L. Davidson, Dione Deaker, Kathryn E. Smith, Gregory A. Wray, Maria Byrne

Abstract:

Marine invertebrate species with calcifying larvae are especially vulnerable to ocean acidification (OA) caused by rising atmospheric CO₂ levels. Acidic conditions can delay development, suppress metabolism, and decrease the availability of carbonate ions in the ocean environment for skeletogenesis. These stresses often result in increased larval mortality, which may lead to significant ecological consequences including alterations to the larval settlement, population distribution, and genetic connectivity. Importantly, many of these physiological and developmental effects are caused by genetic and molecular level changes. Although many studies have examined the effect of near-future oceanic pH levels on gene expression in marine invertebrates, little is known about the impact of OA on gene expression in a developmental context. Here, we performed mRNA-sequencing to investigate the impact of environmental acidity on gene expression across three developmental stages in the sea urchin Heliocidaris erythrogramma. We collected RNA from gastrula, early larva, and 1-day post-metamorphic juvenile sea urchins cultured at present-day and predicted future oceanic pH levels (pH 8.1 and 7.7, respectively). We assembled an annotated reference transcriptome encompassing development from egg to ten days post-metamorphosis by combining these data with datasets from two previous developmental transcriptomic studies of H. erythrogramma. Differential gene expression and time course analyses between pH conditions revealed significant alterations to developmental transcription that are potentially associated with pH stress. Consistent with previous investigations, genes involved in biomineralization and ion transport were significantly upregulated under acidic conditions. Differences in gene expression between the two pH conditions became more pronounced post-metamorphosis, suggesting a development-dependent effect of OA on gene expression. Furthermore, many differences in gene expression later in development appeared to be a result of broad downregulation at pH 7.7: of 539 genes differentially expressed at the juvenile stage, 519 of these were lower in the acidic condition. Time course comparisons between pH 8.1 and 7.7 samples also demonstrated over 500 genes were more lowly expressed in pH 7.7 samples throughout development. Of the genes exhibiting stage-dependent expression level changes, over 15% of these diverged from the expected temporal pattern of expression in the acidic condition. Through these analyses, we identify novel candidate genes involved in development, metabolism, and transcriptional regulation that are possibly affected by pH stress. Our results demonstrate that pH stress significantly alters gene expression dynamics throughout development. A large number of genes differentially expressed between pH conditions in juveniles relative to earlier stages may be attributed to the effects of acidity on transcriptional regulation, as a greater proportion of mRNA at this later stage has been nascent transcribed rather than maternally loaded. Also, the overall downregulation of many genes in the acidic condition suggests that OA-induced developmental delay manifests as suppressed mRNA expression, possibly from lower transcription rates or increased mRNA degradation in the acidic environment. Further studies will be necessary to determine in greater detail the extent of OA effects on early developing marine invertebrates.

Keywords: development, gene expression, ocean acidification, RNA-sequencing, sea urchins

Procedia PDF Downloads 166
1241 SOCS1 Inhibits MDR1 in Mammary Cell Carcinoma Reverses Multidrug Resistance

Authors: Debasish Pradhan, Shaktiprasad Pradhan, Rakesh Kumar Pradhan, Gitanjali Tripathy

Abstract:

Suppressors of cytokine signalling (SOCS1), a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signalling pathway. The current study has uncovered that SOCS1 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS1 on MDR, we analyzed the expression of P-gp and SOCS1 by immunohistochemistry and found there was a positive correlation between them. At that point, we effectively interfered with RNA translation by the contamination of siRNA of SOCS1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi, the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise, the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flow cytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS1 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.

Keywords: breast cancer, multidrug resistance, SOCS1 gene, MDR1 gene, RNA interference

Procedia PDF Downloads 355
1240 Genomics of Adaptation in the Sea

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of selected marine animal species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: marine genomics, evolutionary bioinformatics, human genome sequencing, genomic analyses

Procedia PDF Downloads 609